Data Augmentation Alone Can Improve Adversarial Training

Research output: Contribution to journalConference paperpeer-review

19 Citations (Scopus)
69 Downloads (Pure)

Abstract

Adversarial training suffers from the issue of robust overfitting, which seriously impairs its generalization performance. Data augmentation, which is effective at preventing overfitting in standard training, has been observed by many previous works to be ineffective in mitigating overfitting in adversarial training. This work proves that, contrary to previous findings, data augmentation alone can significantly boost accuracy and robustness in adversarial training. We find that the hardness and the diversity of data augmentation are important factors in combating robust overfitting. In general, diversity can improve both accuracy and robustness, while hardness can boost robustness at the cost of accuracy within a certain limit and degrade them both over that limit. To mitigate robust overfitting, we first propose a new crop transformation, Cropshift, which has improved diversity compared to the conventional one (Padcrop). We then propose a new data augmentation scheme, based on Cropshift, with much improved diversity and well-balanced hardness. Empirically, our augmentation method achieves the state-of-the-art accuracy and robustness for data augmentations in adversarial training. Furthermore, when combined with weight averaging it matches, or even exceeds, the performance of the best contemporary regularization methods for alleviating robust overfitting. Code is available at: https://github.com/TreeLLi/DA-Alone-Improves-AT.
Original languageEnglish
JournalInternational Conference on Learning Representations 2023
DOIs
Publication statusPublished - 24 Jan 2023

Fingerprint

Dive into the research topics of 'Data Augmentation Alone Can Improve Adversarial Training'. Together they form a unique fingerprint.

Cite this