Delineation of positron emission tomography imaging agent binding sites on β-amyloid peptide fibrils

Liang Ye, Jennifer L Morgenstern, Antony D Gee, Guizhu Hong, John Brown, Andrew Lockhart

Research output: Contribution to journalArticlepeer-review

97 Citations (Scopus)

Abstract

A range of imaging agents for use in the positron emission tomography of Alzheimer's disease is currently under development. Each of the main compound classes, derived from thioflavin T (PIB), Congo Red (BSB), and aminonaphthalene (FDDNP) are believed to bind to mutually exclusive sites on the beta-amyloid (Abeta) peptide fibrils. We recently reported the presence of three classes of binding sites (BS1, BS2, BS3) on the Abeta fibrils for thioflavin T derivatives and now extend these findings to demonstrate that these sites are also able to accommodate ligands from the other chemotype classes. The results from competition assays using [3H]Me-BTA-1 (BS3 probe) indicated that both PIB and FDDNP were able to displace the radioligand with Ki values of 25 and 42 nM, respectively. BSB was unable to displace the radioligand tracer from the Abeta fibrils. In contrast, each of the compounds examined were able to displace thioflavin T (BS1 probe) from the Abeta fibrils when evaluated in a fluorescence competition assay with Ki values for PIB, FDDNP, and BSB of 1865, 335, and 600 nM, respectively. Finally, the Kd values for FDDNP and BSB binding to Abeta fibrils were directly determined by monitoring the increases in the ligand intrinsic fluorescence, which were 290 and 104 nM, respectively. The results from these assays indicate that (i) the three classes of thioflavin T binding sites are able to accommodate a wide range of chemotype structures, (ii) BSB binds to two sites on the Abeta fibrils, one of which is BS2, and the other is distinct from the thioflavin T derivative binding sites, and (iii) there is no independent binding site on the fibrils for FDDNP, and the ligand binds to both the BS1 and BS3 sites with significantly lower affinities than previously reported.
Original languageEnglish
Pages (from-to)23599-23604
Number of pages6
JournalJournal of Biological Chemistry
Volume280
Issue number25
DOIs
Publication statusPublished - 24 Jun 2005

Fingerprint

Dive into the research topics of 'Delineation of positron emission tomography imaging agent binding sites on β-amyloid peptide fibrils'. Together they form a unique fingerprint.

Cite this