Abstract
We describe a high-resolution real-time spectroscopy system targeted to ethane gas with sensitivity > or = 70 ppt and response time from > or = 0.7 s. The measurement technique is based on a mid-IR lead-salt laser passing through a Herriott cell through which a gas sample flows. We compare wavelength scanning and locked configurations and discuss their relative merits. The technology has been motivated by clinical breath testing applications, ethane being widely regarded as the most important breath biomarker for cell damage via free-radical-mediated oxidative attack. We discuss preliminary human and animal studies in which ultrasensitive real-time ethane detection offers new diagnostic and monitoring potential.
Original language | English |
---|---|
Pages (from-to) | 4712-21 |
Number of pages | 10 |
Journal | Applied Optics |
Volume | 44 |
Issue number | 22 |
Publication status | Published - 1 Aug 2005 |
Keywords
- Animals
- Biological Science Disciplines
- Breath Tests
- Equipment Design
- Equipment Failure Analysis
- Ethane
- Humans
- Image Enhancement
- Image Interpretation, Computer-Assisted
- Microchemistry
- Online Systems
- Pattern Recognition, Automated
- Pilot Projects
- Reproducibility of Results
- Sensitivity and Specificity
- Spectrophotometry, Infrared