Abstract
Primary aldosteronism accounts for 6–15% of hypertension cases, the single biggest contributor to global morbidity and mortality. Whilst ~50% of these patients have unilateral aldosterone-producing adenomas, only a minority of these have curative surgery as the current diagnosis of unilateral disease is poor. Carbon-11 radiolabelled metomidate ([11C]MTO) is a positron emission tomography (PET) radiotracer able to selectively identify CYP11B1/2 expressing adrenocortical lesions of the adrenal gland. However, the use of [11C]MTO is limited to PET centres equipped with on-site cyclotrons due to its short half-life of 20.4 min. Radiolabelling a fluorometomidate derivative with fluorine-18 (radioactive half life 109.8 min) in the para-aromatic position ([18F]FAMTO) has the potential to overcome this disadvantage and allow it to be transported to non-cyclotron-based imaging centres.
MethodsTwo strategies for the one-step radio-synthesis of [18F]FAMTO were developed. [18F]FAMTO was obtained via radiofluorination via use of sulfonium salt (1) and boronic ester (2) precursors. [18F]FAMTO was evaluated in vitro by autoradiography of pig adrenal tissues and in vivo by determining its biodistribution in rodents. Rat plasma and urine were analysed to determine [18F]FAMTO metabolites.
Results[18F]FAMTO is obtained from sulfonium salt (1) and boronic ester (2) precursors in 7% and 32% non-isolated radiochemical yield (RCY), respectively. Formulated [18F]FAMTO was obtained with >99% radiochemical and enantiomeric purity with a synthesis time of 140 min from the trapping of [18F]fluoride ion on an anion-exchange resin (QMA cartridge). In vitro autoradiography of [18F]FAMTO demonstrated exquisite specific binding in CYP11B-rich pig adrenal glands. In vivo [18F]FAMTO rapidly accumulates in adrenal glands. Liver uptake was about 34% of that in the adrenals and all other organs were <12% of the adrenal uptake at 60 min post-injection. Metabolite analysis showed 13% unchanged [18F]FAMTO in blood at 10 min post-administration and rapid urinary excretion. In vitro assays in human blood showed a free fraction of 37.5%.
Conclusions[18F]FAMTO, a new 18F-labelled analogue of metomidate, was successfully synthesised. In vitro and in vivo characterization demonstrated high selectivity towards aldosterone-producing enzymes (CYP11B1 and CYP11B2), supporting the potential of this radiotracer for human investigation.
Original language | English |
---|---|
Pages (from-to) | 14-21 |
Journal | Nuclear Medicine and Biology |
Volume | 68-69 |
Early online date | 9 Nov 2018 |
DOIs | |
Publication status | E-pub ahead of print - 9 Nov 2018 |
Keywords
- Metomidate
- Adrenal glands
- Fluorine-18 radiochemistry
- Primary aldosteronism
- CYP11B2
- Positron emission tomography