TY - JOUR
T1 - Effect of ultrasound on adherent microbubble contrast agents
AU - Loughran, Jonathan
AU - Sennoga, Charles
AU - Eckersley, Robert J.
AU - Tang, Meng-Xing
PY - 2012/11/7
Y1 - 2012/11/7
N2 - An investigation into the effect of clinical ultrasound exposure on adherent microbubbles is described. A flow phantom was constructed in which targeted microbubbles were attached using biotin-streptavidin linkages. Microbubbles were insonated by broadband imaging pulses (centred at 2.25 MHz) over a range of pressures (peak negative pressure (PNP) = 60-375 kPa). Individual adherent bubbles were observed optically and classified as either being isolated or with a single neighbouring bubble. It is found that bubble detachment and deflation are two significant effects, even during low amplitude ultrasound exposure. Specifically, while at very low acoustic pressure (PNP < 75 kPa) 95% of the bubbles were not affected, at medium pressure (151 kPa < P < 225 kPa) 53% of the bubbles detached and at higher pressures (301 kPa < P < 375 kPa) 96% of the bubbles detached. In addition, more than 50% of the bubbles underwent deflation at pressures between 301 and 375 kPa. At pressures between 226 and 300 kPa, more adherent bubbles detached when there was a neighbouring bubble, suggesting the role of multiple scattering and secondary Bjerknes force on bubble detachment. The flow shear, primary and secondary Bjerknes forces exerted on each bubble were calculated and compared to the estimated forces acting on the bubble due to oscillations. The oscillation force is shown to be much higher than other forces. The mechanisms of bubble detachment are discussed.
AB - An investigation into the effect of clinical ultrasound exposure on adherent microbubbles is described. A flow phantom was constructed in which targeted microbubbles were attached using biotin-streptavidin linkages. Microbubbles were insonated by broadband imaging pulses (centred at 2.25 MHz) over a range of pressures (peak negative pressure (PNP) = 60-375 kPa). Individual adherent bubbles were observed optically and classified as either being isolated or with a single neighbouring bubble. It is found that bubble detachment and deflation are two significant effects, even during low amplitude ultrasound exposure. Specifically, while at very low acoustic pressure (PNP < 75 kPa) 95% of the bubbles were not affected, at medium pressure (151 kPa < P < 225 kPa) 53% of the bubbles detached and at higher pressures (301 kPa < P < 375 kPa) 96% of the bubbles detached. In addition, more than 50% of the bubbles underwent deflation at pressures between 301 and 375 kPa. At pressures between 226 and 300 kPa, more adherent bubbles detached when there was a neighbouring bubble, suggesting the role of multiple scattering and secondary Bjerknes force on bubble detachment. The flow shear, primary and secondary Bjerknes forces exerted on each bubble were calculated and compared to the estimated forces acting on the bubble due to oscillations. The oscillation force is shown to be much higher than other forces. The mechanisms of bubble detachment are discussed.
U2 - 10.1088/0031-9155/57/21/6999
DO - 10.1088/0031-9155/57/21/6999
M3 - Article
SN - 0031-9155
VL - 57
SP - 6999
EP - 7014
JO - Physics in Medicine and Biology
JF - Physics in Medicine and Biology
IS - 21
ER -