TY - JOUR
T1 - Effects of 4-aminopyridine on demyelinated axons, synapses and muscle tension
AU - Smith, K J
AU - Felts, P A
AU - John, G R
PY - 2000/1
Y1 - 2000/1
N2 - Several clinical trials have demonstrated that 4-amino-pyridine (4-AP), a potassium channel-blocking agent, improves symptoms in some patients with multiple sclerosis, The beneficial effects have typically been attributed to the restoration of conduction to demyelinated axons, since this effect was previously demonstrated experimentally. However, the clinical dose is similar to 250-1000 times lower than that used experimentally, potentially making extrapolation of the experimental findings unreliable. To examine the action(s) of 4-AP in demyelinating disorders, the drug was administered at clinical doses, both in vivo and in vitro, tea rat dorsal column axons which had been experimentally demyelinated by the intraspinal injection of ethidium bromide. 4-AP had no consistent effect in restoring conduction to demyelinated axons, even to axons which were held just on the verge of conducting by adjusting the lesion temperature. However, 4-AP had prominent effects that did not involve demyelinated axons, including the potentiation of synaptic transmission and an increase in skeletal muscle twitch tension. We propose that these latter effects may be largely responsible for the beneficial action of 4-AP in multiple sclerosis patients. If so, the dominant effects of 4-AP in multiple sclerosis patients are independent of demyelination, and it follows that 4-AP may be beneficial in other neurological disorders in which function is diminished.
AB - Several clinical trials have demonstrated that 4-amino-pyridine (4-AP), a potassium channel-blocking agent, improves symptoms in some patients with multiple sclerosis, The beneficial effects have typically been attributed to the restoration of conduction to demyelinated axons, since this effect was previously demonstrated experimentally. However, the clinical dose is similar to 250-1000 times lower than that used experimentally, potentially making extrapolation of the experimental findings unreliable. To examine the action(s) of 4-AP in demyelinating disorders, the drug was administered at clinical doses, both in vivo and in vitro, tea rat dorsal column axons which had been experimentally demyelinated by the intraspinal injection of ethidium bromide. 4-AP had no consistent effect in restoring conduction to demyelinated axons, even to axons which were held just on the verge of conducting by adjusting the lesion temperature. However, 4-AP had prominent effects that did not involve demyelinated axons, including the potentiation of synaptic transmission and an increase in skeletal muscle twitch tension. We propose that these latter effects may be largely responsible for the beneficial action of 4-AP in multiple sclerosis patients. If so, the dominant effects of 4-AP in multiple sclerosis patients are independent of demyelination, and it follows that 4-AP may be beneficial in other neurological disorders in which function is diminished.
UR - http://www.scopus.com/inward/record.url?scp=0033982291&partnerID=8YFLogxK
U2 - 10.1093/brain/123.1.171
DO - 10.1093/brain/123.1.171
M3 - Article
SN - 1460-2156
VL - 123
SP - 171
EP - 184
JO - Brain
JF - Brain
IS - 1
ER -