TY - JOUR
T1 - ESS: A Tool for Genome-Scale Quantification of Essentiality Score for Reaction/Genes in Constraint-Based Modeling
AU - Zhang, Cheng
AU - Bidkhori, Gholamreza
AU - Benfeitas, Rui
AU - Lee, Sunjae
AU - Arif, Muhammad
AU - Uhlen, Mathias
AU - Mardinoglu, Adil
PY - 2018/9/28
Y1 - 2018/9/28
N2 - Genome-scale metabolic models (GEMs) are comprehensive descriptions of cell metabolism and have been extensively used to understand biological responses in health and disease. One such application is in determining metabolic adaptation to the absence of a gene or reaction, i.e., essentiality analysis. However, current methods do not permit efficiently and accurately quantifying reaction/gene essentiality. Here, we present Essentiality Score Simulator (ESS), a tool for quantification of gene/reaction essentialities in GEMs. ESS quantifies and scores essentiality of each reaction/gene and their combinations based on the stoichiometric balance using synthetic lethal analysis. This method provides an option to weight metabolic models which currently rely mostly on topologic parameters, and is potentially useful to investigate the metabolic pathway differences between different organisms, cells, tissues, and/or diseases. We benchmarked the proposed method against multiple network topology parameters, and observed that our method displayed higher accuracy based on experimental evidence. In addition, we demonstrated its application in the wild-type and ldh knock-out E. coli core model, as well as two human cell lines, and revealed the changes of essentiality in metabolic pathways based on the reactions essentiality score. ESS is available without any limitation at https://sourceforge.net/projects/essentiality-score-simulator.
AB - Genome-scale metabolic models (GEMs) are comprehensive descriptions of cell metabolism and have been extensively used to understand biological responses in health and disease. One such application is in determining metabolic adaptation to the absence of a gene or reaction, i.e., essentiality analysis. However, current methods do not permit efficiently and accurately quantifying reaction/gene essentiality. Here, we present Essentiality Score Simulator (ESS), a tool for quantification of gene/reaction essentialities in GEMs. ESS quantifies and scores essentiality of each reaction/gene and their combinations based on the stoichiometric balance using synthetic lethal analysis. This method provides an option to weight metabolic models which currently rely mostly on topologic parameters, and is potentially useful to investigate the metabolic pathway differences between different organisms, cells, tissues, and/or diseases. We benchmarked the proposed method against multiple network topology parameters, and observed that our method displayed higher accuracy based on experimental evidence. In addition, we demonstrated its application in the wild-type and ldh knock-out E. coli core model, as well as two human cell lines, and revealed the changes of essentiality in metabolic pathways based on the reactions essentiality score. ESS is available without any limitation at https://sourceforge.net/projects/essentiality-score-simulator.
KW - constraint-based modeling
KW - gene essentiality
KW - genome-scale metabolic models
KW - reaction essentiality
KW - systems biology
U2 - 10.3389/fphys.2018.01355
DO - 10.3389/fphys.2018.01355
M3 - Article
SN - 1664-042X
VL - 9
JO - Frontiers in Physiology
JF - Frontiers in Physiology
ER -