Exploratory Analysis of Recommending Urban Parks for Health-Promoting Activities

Linus Dietz, Sanja Šćepanović, Ke Zhou, Daniele Quercia

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

21 Downloads (Pure)

Abstract

Parks are essential spaces for promoting urban health, and recommender systems could assist individuals in discovering parks for leisure and health-promoting activities. This is particularly important in large cities like London, which has over 1,500 named parks, making it challenging to understand what each park offers. Due to the lack of datasets and the diverse health-promoting activities parks can support (e.g., physical, social, nature-appreciation), it is unclear which recommendation algorithms are best suited for this task. To explore the dynamics of recommending parks for specific activities, we created two datasets: one from a survey of over 250 London residents, and another by inferring visits from over 1 million geotagged Flickr images taken in London parks. Analyzing the geographic patterns of these visits revealed that recommending nearby parks is ineffective, suggesting that this recommendation task is distinct from Point of Interest recommendation. We then tested various recommendation models, identifying a significant popularity bias in the results. Additionally, we found that personalized models have advantages in recommending parks beyond the most popular ones. The data and findings from this study provide a foundation for future research on park recommendations.
Original languageEnglish
Title of host publicationRecSys '24: Proceedings of the 18th ACM Conference on Recommender Systems
Place of PublicationNew York, NY, United States
PublisherAssociation for Computing Machinery (ACM)
Pages1131-1135
Number of pages5
ISBN (Electronic)979-8-4007-0505-2
DOIs
Publication statusPublished - 8 Oct 2024

Fingerprint

Dive into the research topics of 'Exploratory Analysis of Recommending Urban Parks for Health-Promoting Activities'. Together they form a unique fingerprint.

Cite this