TY - JOUR
T1 - Fast acoustic wave sparsely activated localization microscopy
T2 - Ultrasound super-resolution using plane-wave activation of nanodroplets
AU - Zhang, Ge
AU - Harput, Sevan
AU - Hu, Hanyu
AU - Christensen-Jeffries, Kirsten
AU - Zhu, Jiaqi
AU - Brown, Jemma
AU - Leow, Chee Hau
AU - Eckersley, Robert J.
AU - Dunsby, Christopher
AU - Tang, Meng Xing
PY - 2019/6
Y1 - 2019/6
N2 - Localization-based ultrasound super-resolution imaging using microbubble contrast agents and phase-change nanodroplets has been developed to visualize microvascular structures beyond the diffraction limit. However, the long data acquisition time makes the clinical translation more challenging. In this study, fast acoustic wave sparsely activated localization microscopy (fast-AWSALM) was developed to achieve super-resolved frames with subsecond temporal resolution, by using low-boiling-point octafluoropropane nanodroplets and high frame rate plane waves for activation, destruction, as well as imaging. Fast-AWSALM was demonstrated on an in vitro microvascular phantom to super-resolve structures that could not be resolved by conventional B-mode imaging. The effects of the temperature and mechanical index on fast-AWSALM were investigated. The experimental results show that subwavelength microstructures as small as 190μm were resolvable in 200 ms with plane-wave transmission at a center frequency of 3.5 MHz and a pulse repetition frequency of 5000 Hz. This is about a 3.5-fold reduction in point spread function full-width-half-maximum compared to that measured in the conventional B-mode, and two orders of magnitude faster than the recently reported AWSALM under a nonflow/very slow flow situations and other localization-based methods. Just as in AWSALM, fast-AWSALM does not require flow, as is required by current microbubble-based ultrasound super-resolution techniques. In conclusion, this study shows the promise of fast-AWSALM, a super-resolution ultrasound technique using nanodroplets, which can generate super-resolution images in milliseconds and does not require flow.
AB - Localization-based ultrasound super-resolution imaging using microbubble contrast agents and phase-change nanodroplets has been developed to visualize microvascular structures beyond the diffraction limit. However, the long data acquisition time makes the clinical translation more challenging. In this study, fast acoustic wave sparsely activated localization microscopy (fast-AWSALM) was developed to achieve super-resolved frames with subsecond temporal resolution, by using low-boiling-point octafluoropropane nanodroplets and high frame rate plane waves for activation, destruction, as well as imaging. Fast-AWSALM was demonstrated on an in vitro microvascular phantom to super-resolve structures that could not be resolved by conventional B-mode imaging. The effects of the temperature and mechanical index on fast-AWSALM were investigated. The experimental results show that subwavelength microstructures as small as 190μm were resolvable in 200 ms with plane-wave transmission at a center frequency of 3.5 MHz and a pulse repetition frequency of 5000 Hz. This is about a 3.5-fold reduction in point spread function full-width-half-maximum compared to that measured in the conventional B-mode, and two orders of magnitude faster than the recently reported AWSALM under a nonflow/very slow flow situations and other localization-based methods. Just as in AWSALM, fast-AWSALM does not require flow, as is required by current microbubble-based ultrasound super-resolution techniques. In conclusion, this study shows the promise of fast-AWSALM, a super-resolution ultrasound technique using nanodroplets, which can generate super-resolution images in milliseconds and does not require flow.
KW - Acoustic droplet vaporization
KW - octafluoropropane (OFP) nanodroplet
KW - super-localization
KW - super-resolution imaging
KW - ultrafast
U2 - 10.1109/TUFFC.2019.2906496
DO - 10.1109/TUFFC.2019.2906496
M3 - Article
AN - SCOPUS:85067207626
SN - 0885-3010
VL - 66
SP - 1039
EP - 1046
JO - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
JF - IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
IS - 6
ER -