Fluid–solid interaction in the rate-dependent failure of brain tissue and biomimicking gels

M. Terzano, A. Spagnoli*, D. Dini, A. E. Forte

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

12 Citations (Scopus)

Abstract

Brain tissue is a heterogeneous material, constituted by a soft matrix filled with cerebrospinal fluid. The interactions between, and the complexity of each of these components are responsible for the non-linear rate-dependent behaviour that characterises what is one of the most complex tissue in nature. Here, we investigate the influence of the cutting rate on the fracture properties of brain, through wire cutting experiments. We also present a computational model for the rate-dependent behaviour of fracture propagation in soft materials, which comprises the effects of fluid interaction through a poro-hyperelastic formulation. The method is developed in the framework of finite strain continuum mechanics, implemented in a commercial finite element code, and applied to the case of an edge-crack remotely loaded by a controlled displacement. Experimental and numerical results both show a toughening effect with increasing rates, which is linked to the energy dissipated by the fluid–solid interactions in the region surrounding the crack tip.

Original languageEnglish
Article number104530
JournalJournal Of The Mechanical Behavior Of Biomedical Materials
Volume119
DOIs
Publication statusPublished - Jul 2021

Keywords

  • Brain tissue
  • Hydrogels
  • Poroelasticity
  • Rate-dependent fracture

Fingerprint

Dive into the research topics of 'Fluid–solid interaction in the rate-dependent failure of brain tissue and biomimicking gels'. Together they form a unique fingerprint.

Cite this