Fluoroquinolone-metal complexes: A route to counteract bacterial resistance?

Maria J. Feio, Isabel Sousa, Mariana Ferreira, Luís Cunha-Silva, Raúl G. Saraiva, Carla Queirós, José G. Alexandre, Vasco Claro, Adélia Mendes, Rosa Ortiz, Sandra Lopes, Ana Luísa Amaral, João Lino, Patrícia Fernandes, Ana João Silva, Lisete Moutinho, Baltazar De Castro, Eulália Pereira, Lourdes Perelló, Paula Gameiro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

54 Citations (Scopus)

Abstract

Microbial resistance to antibiotics is one of the biggest public health threats of the modern world. Antibiotic resistance is an area of much clinical relevance and therefore research that has the potential to identify agents that may circumvent it or treat resistant infections is paramount. Solution behavior of various fluoroquinolone (FQ) complexes with copper(II) in the presence and absence of 1,10-phenanthroline (phen) was studied in aqueous solution, by potentiometry and/or spectrophotometry, and are herein described. The results obtained showed that under physiological conditions (micromolar concentration range and pH 7.4) only copper(II):FQ:phen ternary complexes are stable. Hence, these complexes were synthesised and characterised by means of UV-visible and IR spectroscopy, elemental analysis and single-crystal X-ray diffraction. In these complexes, the FQ acts as a bidentate ligand that coordinates the metal cation through the carbonyl and carboxyl oxygen atoms and phen coordinates through two N-atoms forming the equatorial plane of a distorted square-pyramidal geometry. The fifth position of the penta-coordinated Cu(II) centre is generally occupied axially by an oxygen atom from a water molecule or from a nitrate ion. Minimum inhibitory concentration (MIC) determinations of the complexes and comparison with free FQ in various E. coli strains indicate that the Cu-complexes are as efficient antimicrobials as the free antibiotic. Moreover, results strongly suggest that the cell intake route of both species is different supporting, therefore, the complexes' suitability as candidates for further biological testing in FQ-resistant microorganisms.

Original languageEnglish
Pages (from-to)129-143
Number of pages15
JournalJournal of Inorganic Biochemistry
Volume138
DOIs
Publication statusPublished - Sept 2014

Keywords

  • Bacterial resistance
  • Fluoroquinolones
  • Metalloantibiotics
  • Solution equilibria

Fingerprint

Dive into the research topics of 'Fluoroquinolone-metal complexes: A route to counteract bacterial resistance?'. Together they form a unique fingerprint.

Cite this