Green synthesis of methoxy-poly(ethylene glycol)-block-poly(L-lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo

Prabhanjan S Giram, Julie Tzu-Wen Wang, Adam A Walters, Priyanka P Rade, Muhammad Akhtar, Shunping Han, Farid N Faruqu, Hend M Abdel-Bar, Baijayantimala Garnaik, Khuloud T Al-Jamal

Research output: Contribution to journalArticlepeer-review

19 Citations (Scopus)

Abstract

Poly(lactic-co-glycolic acid) (PLGA) is the most commonly described biocompatible copolymer used in biomedical applications. In this work, a green synthetic approach based on the biocompatible zinc proline complex, as an initiator for PLGA synthesis, is reported for the first time for the synthesis of methoxy-poly(ethylene glycol)-block-poly(l-lactic-co-glycolic acid) (mPEG-PLGA). mPEG-PLGA with controlled molecular weight and narrow polydispersity was synthesised. Its potential for delivery of irinotecan (Ir), a poorly water-soluble chemotherapeutic drug used for the treatment of colon and pancreatic cancer, was studied. Nanoparticles of controlled size (140-160 nm), surface charge (∼-10 mV), release properties and cytotoxicity against CT-26 (colon) and BxPC-3 (pancreatic) cancer cells, were prepared. Tumor accumulation was confirmed by optical imaging of fluorescently labelled nanoparticles. Unlike Tween® 80 coated NP-Ir, the Pluronic® F-127 coated NP-Ir exhibits significant tumor growth delay compared to untreated and blank formulation treated groups in the CT-26 subcutaneous tumor model, after 4 treatments of 30 mg irinotecan per kg dose. Overall, this proof-of-concept study demonstrates that the newly synthesized copolymer, via a green route, is proven to be nontoxic, requires fewer purification steps and has potential applications in drug delivery.

Original languageEnglish
JournalBiomaterials Science
DOIs
Publication statusE-pub ahead of print - 18 Nov 2020

Fingerprint

Dive into the research topics of 'Green synthesis of methoxy-poly(ethylene glycol)-block-poly(L-lactide-co-glycolide) copolymer using zinc proline as a biocompatible initiator for irinotecan delivery to colon cancer in vivo'. Together they form a unique fingerprint.

Cite this