TY - JOUR
T1 - Insights into E. coli cyclopropane fatty acid synthase (CFAS) towards enantioselective carbene free biocatalytic cyclopropanation.
AU - Barry, Sarah
N1 - Publisher Copyright:
© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
PY - 2024/4/25
Y1 - 2024/4/25
N2 - Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
AB - Cyclopropane fatty acid synthases (CFAS) are a class of S-adenosylmethionine (SAM) dependent methyltransferase enzymes able to catalyse the cyclopropanation of unsaturated phospholipids. Since CFAS enzymes employ SAM as a methylene source to cyclopropanate alkene substrates, they have the potential to be mild and more sustainable biocatalysts for cyclopropanation transformations than current carbene-based approaches. This work describes the characterisation of E. coli CFAS (ecCFAS) and its exploitation in the stereoselective biocatalytic synthesis of cyclopropyl lipids. ecCFAS was found to convert phosphatidylglycerol (PG) to methyl dihydrosterculate 1 with up to 58 % conversion and 73 % ee and the absolute configuration (9S,10R) was established. Substrate tolerance of ecCFAS was found to be correlated with the electronic properties of phospholipid headgroups and for the first time ecCFAS was found to catalyse cyclopropanation of both phospholipid chains to form dicyclopropanated products. In addition, mutagenesis and in silico experiments were carried out to identify the enzyme residues with key roles in catalysis and to provide structural insights into the lipid substrate preference of ecCFAS. Finally, the biocatalytic synthesis of methyl dihydrosterculate 1 and its deuterated analogue was also accomplished combining recombinant ecCFAS with the SAM regenerating AtHMT enzyme in the presence of CH3I and CD3I respectively.
UR - http://www.scopus.com/inward/record.url?scp=85195847716&partnerID=8YFLogxK
U2 - 10.1002/anie.202403493
DO - 10.1002/anie.202403493
M3 - Article
SN - 1433-7851
VL - 63
JO - ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
JF - ANGEWANDTE CHEMIE-INTERNATIONAL EDITION
IS - 29
M1 - e202403493
ER -