Abstract
Super-resolution techniques that localise isolated bubble signals first require detection algorithms to separate the bubble and tissue responses. This work explores the available bubble detection techniques for super-resolution of tumour microvasculature. Pulse inversion (PI), differential imaging (DI) and singular value decomposition (SVD) filtering were compared in terms of the localisation accuracy, precision and contrast to tissue ratio (CTR). Bubble responses were simulated using the Marmottant model. Non-linear propagation through moving and stationary tissue was modelled using k-Wave. The results showed that PI signal was largely independent of flow direction and speed compared to SVD and DI which were less appropriate for lateral motion. At the lowest speeds, the bubble displacement between frames is not sufficient to generate a strong differential signal. SVD is unsuitable for stationary bubbles. For super-resolution of tumour microvasculature, the results suggest that non-linear techniques are preferential.
Original language | English |
---|---|
Title of host publication | 2017 IEEE International Ultrasonics Symposium, IUS 2017 |
Publisher | IEEE Computer Society |
ISBN (Electronic) | 9781538633830 |
DOIs | |
Publication status | Published - 31 Oct 2017 |
Event | 2017 IEEE International Ultrasonics Symposium, IUS 2017 - Washington, United States Duration: 6 Sept 2017 → 9 Sept 2017 |
Conference
Conference | 2017 IEEE International Ultrasonics Symposium, IUS 2017 |
---|---|
Country/Territory | United States |
City | Washington |
Period | 6/09/2017 → 9/09/2017 |