TY - JOUR
T1 - Key separable events in the remodelling of the pharyngeal arches
AU - Poopalasundaram, Subathra
AU - Richardson, Jo
AU - Graham, Anthony
N1 - Funding Information:
This work was funded by the BBSRC (Grant Ref: BB/R006199/1) and The Anatomical Society. We thank Caroline Formstone for comments on the manuscript.
Funding Information:
This work was funded by the BBSRC (Grant Ref: BB/R006199/1) and The Anatomical Society. We thank Caroline Formstone for comments on the manuscript.
Publisher Copyright:
© 2023 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
PY - 2023/7
Y1 - 2023/7
N2 - The pharyngeal arches are a series of bulges on the lateral surface of the embryonic head. They are a defining feature of the most conserved, the phylotypic, stage of vertebrate development. In many vertebrate clades, the segmental arrangement of the pharyngeal arches is translated into the iterative anatomy of the gill arches. However, in amniotes the pharyngeal arches undergo a rearrangement during development and the segmental organisation of the pharynx is lost. This remodelling involves the expansion of the second arch which comes to overlie the more posterior arches. A transient sinus forms between the expanded second arch and the posterior arches, that is then lost, and the posterior arches are internalised. The morphogenesis of the second arch has been viewed as being central to this remodelling. Yet little is known about this process. Therefore, in this study, we have characterised the development of the second arch. We show that as the second arch expands, its posterior margin forms a leading edge and that the mesenchymal cells subjacent to this are in an elevated proliferative state. We further show that the posterior marginal epithelium is the site of expression of three key developmental signalling molecules: BMP7, FGF8 and SHH, and that their expression continues throughout the period of expansion. Using a novel approach, we have been able to simultaneously inhibit these three pathways, and we find that when this is done the second arch fails to establish its caudal projection and that there is a loss of proliferation in the posterior mesenchymal cells of the second arch. We have further used this manipulation to ask if the internalisation of the posterior arches is dependent upon the expansion of the second arch. We find that it is not—the posterior arches are still internalised when the expansion of the second arch is curtailed. We further show that while the collapse of the sinus is dependent upon thyroid hormone signalling, that this is not the case for the internalisation of the posterior pouches. Thus, the internalisation of the posterior arches is not dependent on the expansion of the second arch or on the collapse of the sinus. Finally, we show that the termination of expansion of the second arch correlates with a burst of morphogenetic cell death suggesting a mechanism for ending this. Thus, while it has long been thought that it is the morphogenesis of the second arch that drives the remodelling of the pharyngeal arches, we show that this is not the case. Rather the remodelling of the pharyngeal arches is a composite process that can split into contemporaneous but separate events: the expansion of the second arch, the internalisation of the posterior arches and the collapse of the sinus.
AB - The pharyngeal arches are a series of bulges on the lateral surface of the embryonic head. They are a defining feature of the most conserved, the phylotypic, stage of vertebrate development. In many vertebrate clades, the segmental arrangement of the pharyngeal arches is translated into the iterative anatomy of the gill arches. However, in amniotes the pharyngeal arches undergo a rearrangement during development and the segmental organisation of the pharynx is lost. This remodelling involves the expansion of the second arch which comes to overlie the more posterior arches. A transient sinus forms between the expanded second arch and the posterior arches, that is then lost, and the posterior arches are internalised. The morphogenesis of the second arch has been viewed as being central to this remodelling. Yet little is known about this process. Therefore, in this study, we have characterised the development of the second arch. We show that as the second arch expands, its posterior margin forms a leading edge and that the mesenchymal cells subjacent to this are in an elevated proliferative state. We further show that the posterior marginal epithelium is the site of expression of three key developmental signalling molecules: BMP7, FGF8 and SHH, and that their expression continues throughout the period of expansion. Using a novel approach, we have been able to simultaneously inhibit these three pathways, and we find that when this is done the second arch fails to establish its caudal projection and that there is a loss of proliferation in the posterior mesenchymal cells of the second arch. We have further used this manipulation to ask if the internalisation of the posterior arches is dependent upon the expansion of the second arch. We find that it is not—the posterior arches are still internalised when the expansion of the second arch is curtailed. We further show that while the collapse of the sinus is dependent upon thyroid hormone signalling, that this is not the case for the internalisation of the posterior pouches. Thus, the internalisation of the posterior arches is not dependent on the expansion of the second arch or on the collapse of the sinus. Finally, we show that the termination of expansion of the second arch correlates with a burst of morphogenetic cell death suggesting a mechanism for ending this. Thus, while it has long been thought that it is the morphogenesis of the second arch that drives the remodelling of the pharyngeal arches, we show that this is not the case. Rather the remodelling of the pharyngeal arches is a composite process that can split into contemporaneous but separate events: the expansion of the second arch, the internalisation of the posterior arches and the collapse of the sinus.
KW - pharyngeal
KW - arch
KW - pouch
KW - hyoid
KW - morphogenesis
UR - http://www.scopus.com/inward/record.url?scp=85148631248&partnerID=8YFLogxK
U2 - 10.1111/joa.13850
DO - 10.1111/joa.13850
M3 - Article
SN - 0021-8782
VL - 243
SP - 100
EP - 109
JO - Journal of Anatomy
JF - Journal of Anatomy
IS - 1
ER -