TY - JOUR
T1 - Long-term exposure to primary traffic pollutants and lung function in children
T2 - Cross-sectional study and meta-analysis
AU - Barone-Adesi, Francesco
AU - Dent, Jennifer E.
AU - Dajnak, David
AU - Beevers, Sean
AU - Anderson, H. Ross
AU - Kelly, Frank J.
AU - Cook, Derek G.
AU - Whincup, Peter H.
PY - 2015/11/30
Y1 - 2015/11/30
N2 - Background There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Methods and Findings Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV12 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Conclusions Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.
AB - Background There is widespread concern about the possible health effects of traffic-related air pollution. Nitrogen dioxide (NO2) is a convenient marker of primary pollution. We investigated the associations between lung function and current residential exposure to a range of air pollutants (particularly NO2, NO, NOx and particulate matter) in London children. Moreover, we placed the results for NO2 in context with a meta-analysis of published estimates of the association. Methods and Findings Associations between primary traffic pollutants and lung function were investigated in 4884 children aged 9-10 years who participated in the Child Heart and Health Study in England (CHASE). A systematic literature search identified 13 studies eligible for inclusion in a meta-analysis. We combined results from the meta-analysis with the distribution of the values of FEV1 in CHASE to estimate the prevalence of children with abnormal lung function (FEV12 exposure. In CHASE, there were non-significant inverse associations between all pollutants except ozone and both FEV1 and FVC. In the meta-analysis, a 10 μg/m3 increase in NO2 was associated with an 8 ml lower FEV1 (95% CI: -14 to -1 ml; p: 0.016). The observed effect was not modified by a reported asthma diagnosis. On the basis of these results, a 10 μg/m3 increase in NO2 level would translate into a 7% (95% CI: 4% to 12%) increase of the prevalence of children with abnormal lung function. Conclusions Exposure to traffic pollution may cause a small overall reduction in lung function and increase the prevalence of children with clinically relevant declines in lung function.
UR - http://www.scopus.com/inward/record.url?scp=84957550911&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0142565
DO - 10.1371/journal.pone.0142565
M3 - Article
AN - SCOPUS:84957550911
SN - 1932-6203
VL - 10
JO - PL o S One
JF - PL o S One
IS - 11
M1 - e0142565
ER -