Abstract
We report the first measurement of the atmospheric neutrino-oxygen neutral-current quasielastic (NCQE) cross section in the gadolinium-loaded Super-Kamiokande (SK) water Cherenkov detector. In June 2020, SK began a new experimental phase, named SK-Gd, by loading 0.011% by mass of gadolinium into the ultrapure water of the SK detector. The introduction of gadolinium to ultrapure water has the effect of improving the neutron-tagging efficiency. Using a 552.2 day dataset from August 2020 to June 2022, we measure the NCQE cross section to be 0.74±0.22(stat)-0.15+0.85(syst)×10-38 cm2/oxygen in the energy range from 160 MeV to 10 GeV, which is consistent with the atmospheric neutrino-flux-averaged theoretical NCQE cross section and the measurement in the SK pure-water phase within the uncertainties. Furthermore, we compare the models of the nucleon-nucleus interactions in water and find that the binary cascade model and the Liège intranuclear cascade model provide a somewhat better fit to the observed data than the Bertini cascade model. Since the atmospheric neutrino-oxygen NCQE reactions are one of the main backgrounds in the search for diffuse supernova neutrino background (DSNB), these new results will contribute to future studies - and the potential discovery - of the DSNB in SK.
Original language | English |
---|---|
Article number | L011101 |
Journal | Physical Review D |
Volume | 109 |
Issue number | 1 |
DOIs | |
Publication status | Published - 4 Jan 2024 |
Fingerprint
Dive into the research topics of 'Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos in the SK-Gd experiment'. Together they form a unique fingerprint.Cite this
- APA
- Author
- BIBTEX
- Harvard
- Standard
- RIS
- Vancouver
}
In: Physical Review D, Vol. 109, No. 1, L011101, 04.01.2024.
Research output: Contribution to journal › Letter › peer-review
TY - JOUR
T1 - Measurement of the neutrino-oxygen neutral-current quasielastic cross section using atmospheric neutrinos in the SK-Gd experiment
AU - Sakai, S.
AU - Abe, K.
AU - Bronner, C.
AU - Hayato, Y.
AU - Hiraide, K.
AU - Hosokawa, K.
AU - Ieki, K.
AU - Ikeda, M.
AU - Kameda, J.
AU - Kanemura, Y.
AU - Kaneshima, R.
AU - Kashiwagi, Y.
AU - Kataoka, Y.
AU - Miki, S.
AU - Mine, S.
AU - Miura, M.
AU - Moriyama, S.
AU - Nakano, Y.
AU - Nakahata, M.
AU - Nakayama, S.
AU - Noguchi, Y.
AU - Sato, K.
AU - Sekiya, H.
AU - Shiba, H.
AU - Shimizu, K.
AU - Shiozawa, M.
AU - Sonoda, Y.
AU - Suzuki, Y.
AU - Takeda, A.
AU - Takemoto, Y.
AU - Tanaka, H.
AU - Yano, T.
AU - Han, S.
AU - Kajita, T.
AU - Okumura, K.
AU - Tashiro, T.
AU - Tomiya, T.
AU - Wang, X.
AU - Yoshida, S.
AU - Fernandez, P.
AU - Labarga, L.
AU - Ospina, N.
AU - Zaldivar, B.
AU - Pointon, B. W.
AU - Kearns, E.
AU - Raaf, J. L.
AU - Wan, L.
AU - Wester, T.
AU - Bian, J.
AU - Griskevich, N. J.
AU - Locke, S.
AU - Smy, M. B.
AU - Sobel, H. W.
AU - Takhistov, V.
AU - Yankelevich, A.
AU - Hill, J.
AU - Jang, M. C.
AU - Lee, S. H.
AU - Moon, D. H.
AU - Park, R. G.
AU - Bodur, B.
AU - Scholberg, K.
AU - Walter, C. W.
AU - Beauchêne, A.
AU - Drapier, O.
AU - Giampaolo, A.
AU - Mueller, Th A.
AU - Santos, A. D.
AU - Paganini, P.
AU - Quilain, B.
AU - Nakamura, T.
AU - Jang, J. S.
AU - Machado, L. N.
AU - Learned, J. G.
AU - Choi, K.
AU - Iovine, N.
AU - Cao, S.
AU - Anthony, L. H.V.
AU - Martin, D.
AU - Prouse, N. W.
AU - Scott, M.
AU - Sztuc, A. A.
AU - Uchida, Y.
AU - Berardi, V.
AU - Calabria, N. F.
AU - Catanesi, M. G.
AU - Radicioni, E.
AU - Langella, A.
AU - De Rosa, G.
AU - Collazuol, G.
AU - Iacob, F.
AU - Mattiazzi, M.
AU - Ludovici, L.
AU - Gonin, M.
AU - Pronost, G.
AU - Fujisawa, C.
AU - Maekawa, Y.
AU - Nishimura, Y.
AU - Okazaki, R.
AU - Akutsu, R.
AU - Friend, M.
AU - Hasegawa, T.
AU - Ishida, T.
AU - Kobayashi, T.
AU - Jakkapu, M.
AU - Matsubara, T.
AU - Nakadaira, T.
AU - Nakamura, K. D.
AU - Oyama, Y.
AU - Sakashita, K.
AU - Sekiguchi, T.
AU - Tsukamoto, T.
AU - Bhuiyan, N.
AU - Burton, G. T.
AU - Di Lodovico, F.
AU - Gao, J.
AU - Goldsack, A.
AU - Katori, T.
AU - Migenda, J.
AU - Ramsden, R. M.
AU - Zsoldos, S.
AU - Suzuki, A. T.
AU - Takagi, Y.
AU - Zhong, H.
AU - Takeuchi, Y.
AU - Feng, J.
AU - Feng, L.
AU - Hu, J. R.
AU - Hu, Z.
AU - Kawaue, M.
AU - Kikawa, T.
AU - Mori, M.
AU - Nakaya, T.
AU - Wendell, R. A.
AU - Yasutome, K.
AU - Jenkins, S. J.
AU - Mccauley, N.
AU - Mehta, P.
AU - Tarant, A.
AU - Fukuda, Y.
AU - Itow, Y.
AU - Menjo, H.
AU - Ninomiya, K.
AU - Yoshioka, Y.
AU - Lagoda, J.
AU - Lakshmi, S. M.
AU - Mandal, M.
AU - Mijakowski, P.
AU - Prabhu, Y. S.
AU - Zalipska, J.
AU - Jia, M.
AU - Jiang, J.
AU - Jung, C. K.
AU - Shi, W.
AU - Wilking, M. J.
AU - Yanagisawa, C.
AU - Harada, M.
AU - Hino, Y.
AU - Ishino, H.
AU - Koshio, Y.
AU - Nakanishi, F.
AU - Tada, T.
AU - Tano, T.
AU - Ishizuka, T.
AU - Barr, G.
AU - Barrow, D.
AU - Cook, L.
AU - Samani, S.
AU - Wark, D.
AU - Holin, A.
AU - Nova, F.
AU - Jung, S.
AU - Yang, B. S.
AU - Yang, J. Y.
AU - Yoo, J.
AU - Fannon, J. E.P.
AU - Kneale, L.
AU - Malek, M.
AU - Mcelwee, J. M.
AU - Thiesse, M. D.
AU - Thompson, L. F.
AU - Wilson, S. T.
AU - Okazawa, H.
AU - Kim, S. B.
AU - Kwon, E.
AU - Seo, J. W.
AU - Yu, I.
AU - Ichikawa, A. K.
AU - Nakamura, K. D.
AU - Tairafune, S.
AU - Nishijima, K.
AU - Eguchi, A.
AU - Nakagiri, K.
AU - Nakajima, Y.
AU - Shima, S.
AU - Taniuchi, N.
AU - Watanabe, E.
AU - Yokoyama, M.
AU - De Perio, P.
AU - Fujita, S.
AU - Martens, K.
AU - Tsui, K. M.
AU - Vagins, M. R.
AU - Xia, J.
AU - Izumiyama, S.
AU - Kuze, M.
AU - Matsumoto, R.
AU - Ishitsuka, M.
AU - Ito, H.
AU - Ommura, Y.
AU - Shigeta, N.
AU - Shinoki, M.
AU - Yamauchi, K.
AU - Yoshida, T.
AU - Gaur, R.
AU - Gousy-Leblanc, V.
AU - Hartz, M.
AU - Konaka, A.
AU - Li, X.
AU - Chen, S.
AU - Xu, B. D.
AU - Zhang, B.
AU - Posiadala-Zezula, M.
AU - Boyd, S. B.
AU - Edwards, R.
AU - Hadley, D.
AU - Nicholson, M.
AU - O'flaherty, M.
AU - Richards, B.
AU - Ali, A.
AU - Jamieson, B.
AU - Amanai, S.
AU - Marti, Ll
AU - Minamino, A.
AU - Suzuki, S.
N1 - Funding Information: We gratefully acknowledge the cooperation of the Kamioka Mining and Smelting Company. The Super-Kamiokande experiment has been built and operated from funding by the Japanese Ministry of Education, Culture, Sports, Science and Technology, the U.S. Department of Energy, and the U.S. National Science Foundation. Some of us have been supported by funds from the National Research Foundation of Korea (Grants No. NRF-2009-0083526 and No. NRF 2022R1A5A1030700) funded by the Ministry of Science, Information and Communication Technology (ICT), the Institute for Basic Science (No. IBS-R016-Y2), and the Ministry of Education (No. 2018R1D1A1B07049158 and No. 2021R1I1A1A01042256), the Japan Society for the Promotion of Science, including KAKENHI (JP22KJ2301), the National Natural Science Foundation of China under Grant No. 11620101004, the Spanish Ministry of Science, Universities and Innovation (Grant No. PGC2018-099388-B-I00), the Natural Sciences and Engineering Research Council (NSERC) of Canada, the SciNet and WestGrid consortia of Compute Canada, the National Science Centre (No. UMO-2018/30/E/ST2/00441) and the Ministry of Education and Science (No. DIR/WK/2017/05), Poland, the Science and Technology Facilities Council (STFC) and Grid for Particle Physics (GridPP), UK, the European Union’s Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie Grant Agreement No. 754496, H2020-MSCA-RISE-2018 JENNIFER2 Grant Agreement No. 822070, and H2020-MSCA-RISE-2019 SK2HK Grant Agreement No. 872549. Publisher Copyright: © 2024 authors. Published by the American Physical Society. Funded by SCOAP
PY - 2024/1/4
Y1 - 2024/1/4
N2 - We report the first measurement of the atmospheric neutrino-oxygen neutral-current quasielastic (NCQE) cross section in the gadolinium-loaded Super-Kamiokande (SK) water Cherenkov detector. In June 2020, SK began a new experimental phase, named SK-Gd, by loading 0.011% by mass of gadolinium into the ultrapure water of the SK detector. The introduction of gadolinium to ultrapure water has the effect of improving the neutron-tagging efficiency. Using a 552.2 day dataset from August 2020 to June 2022, we measure the NCQE cross section to be 0.74±0.22(stat)-0.15+0.85(syst)×10-38 cm2/oxygen in the energy range from 160 MeV to 10 GeV, which is consistent with the atmospheric neutrino-flux-averaged theoretical NCQE cross section and the measurement in the SK pure-water phase within the uncertainties. Furthermore, we compare the models of the nucleon-nucleus interactions in water and find that the binary cascade model and the Liège intranuclear cascade model provide a somewhat better fit to the observed data than the Bertini cascade model. Since the atmospheric neutrino-oxygen NCQE reactions are one of the main backgrounds in the search for diffuse supernova neutrino background (DSNB), these new results will contribute to future studies - and the potential discovery - of the DSNB in SK.
AB - We report the first measurement of the atmospheric neutrino-oxygen neutral-current quasielastic (NCQE) cross section in the gadolinium-loaded Super-Kamiokande (SK) water Cherenkov detector. In June 2020, SK began a new experimental phase, named SK-Gd, by loading 0.011% by mass of gadolinium into the ultrapure water of the SK detector. The introduction of gadolinium to ultrapure water has the effect of improving the neutron-tagging efficiency. Using a 552.2 day dataset from August 2020 to June 2022, we measure the NCQE cross section to be 0.74±0.22(stat)-0.15+0.85(syst)×10-38 cm2/oxygen in the energy range from 160 MeV to 10 GeV, which is consistent with the atmospheric neutrino-flux-averaged theoretical NCQE cross section and the measurement in the SK pure-water phase within the uncertainties. Furthermore, we compare the models of the nucleon-nucleus interactions in water and find that the binary cascade model and the Liège intranuclear cascade model provide a somewhat better fit to the observed data than the Bertini cascade model. Since the atmospheric neutrino-oxygen NCQE reactions are one of the main backgrounds in the search for diffuse supernova neutrino background (DSNB), these new results will contribute to future studies - and the potential discovery - of the DSNB in SK.
UR - http://www.scopus.com/inward/record.url?scp=85183198822&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.109.L011101
DO - 10.1103/PhysRevD.109.L011101
M3 - Letter
AN - SCOPUS:85183198822
SN - 2470-0010
VL - 109
JO - Physical Review D
JF - Physical Review D
IS - 1
M1 - L011101
ER -