Abstract
Cardiac MRI–derived, left ventricular, event-specific remodeling signatures provided quantitative information on subclinical disease and were more predictive of 10-year cardiovascular events than standard mass and volume measures after adjustment for cardiovascular risk factors.
Background
Left ventricular (LV) subclinical remodeling is associated with adverse outcomes and indicates mechanisms of disease development. Standard metrics such as LV mass and volumes may not capture the full range of remodeling.
Purpose
To quantify the relationship between LV three-dimensional shape at MRI and incident cardiovascular events over 10 years.
Materials and Methods
In this retrospective study, 5098 participants from the Multi-Ethnic Study of Atherosclerosis who were free of clinical cardiovascular disease underwent cardiac MRI from 2000 to 2002. LV shape models were automatically generated using a machine learning workflow. Event-specific remodeling signatures were computed using partial least squares regression, and random survival forests were used to determine which features were most associated with incident heart failure (HF), coronary heart disease (CHD), and cardiovascular disease (CVD) events over a 10-year follow-up period. The discrimination improvement of adding LV shape to traditional cardiovascular risk factors, coronary artery calcium scores, and N-terminal pro–brain natriuretic peptide levels was assessed using the index of prediction accuracy and time-dependent area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival curves were used to illustrate the ability of remodeling signatures to predict the end points.
Results
Overall, 4618 participants had sufficient three-dimensional MRI information to generate patient-specific LV models (mean age, 60.6 years ± 9.9 [SD]; 2540 women). Among these participants, 147 had HF, 317 had CHD, and 455 had CVD events. The addition of LV remodeling signatures to traditional cardiovascular risk factors improved the mean AUC for 10-year survival prediction and achieved better performance than LV mass and volumes; HF (AUC, 0.83 ± 0.01 and 0.81 ± 0.01, respectively; P < .05), CHD (AUC, 0.77 ± 0.01 and 0.75 ± 0.01, respectively; P < .05), and CVD (AUC, 0.78 ± 0.0 and 0.76 ± 0.0, respectively; P < .05). Kaplan-Meier analysis demonstrated that participants with high-risk HF remodeling signatures had a 10-year survival rate of 56% compared with 95% for those with low-risk scores.
Conclusion
Left ventricular event-specific remodeling signatures were more predictive of heart failure, coronary heart disease, and cardiovascular disease events over 10 years than standard mass and volume measures and enable an automatic personalized medicine approach to tracking remodeling.
Background
Left ventricular (LV) subclinical remodeling is associated with adverse outcomes and indicates mechanisms of disease development. Standard metrics such as LV mass and volumes may not capture the full range of remodeling.
Purpose
To quantify the relationship between LV three-dimensional shape at MRI and incident cardiovascular events over 10 years.
Materials and Methods
In this retrospective study, 5098 participants from the Multi-Ethnic Study of Atherosclerosis who were free of clinical cardiovascular disease underwent cardiac MRI from 2000 to 2002. LV shape models were automatically generated using a machine learning workflow. Event-specific remodeling signatures were computed using partial least squares regression, and random survival forests were used to determine which features were most associated with incident heart failure (HF), coronary heart disease (CHD), and cardiovascular disease (CVD) events over a 10-year follow-up period. The discrimination improvement of adding LV shape to traditional cardiovascular risk factors, coronary artery calcium scores, and N-terminal pro–brain natriuretic peptide levels was assessed using the index of prediction accuracy and time-dependent area under the receiver operating characteristic curve (AUC). Kaplan-Meier survival curves were used to illustrate the ability of remodeling signatures to predict the end points.
Results
Overall, 4618 participants had sufficient three-dimensional MRI information to generate patient-specific LV models (mean age, 60.6 years ± 9.9 [SD]; 2540 women). Among these participants, 147 had HF, 317 had CHD, and 455 had CVD events. The addition of LV remodeling signatures to traditional cardiovascular risk factors improved the mean AUC for 10-year survival prediction and achieved better performance than LV mass and volumes; HF (AUC, 0.83 ± 0.01 and 0.81 ± 0.01, respectively; P < .05), CHD (AUC, 0.77 ± 0.01 and 0.75 ± 0.01, respectively; P < .05), and CVD (AUC, 0.78 ± 0.0 and 0.76 ± 0.0, respectively; P < .05). Kaplan-Meier analysis demonstrated that participants with high-risk HF remodeling signatures had a 10-year survival rate of 56% compared with 95% for those with low-risk scores.
Conclusion
Left ventricular event-specific remodeling signatures were more predictive of heart failure, coronary heart disease, and cardiovascular disease events over 10 years than standard mass and volume measures and enable an automatic personalized medicine approach to tracking remodeling.
Original language | English |
---|---|
Journal | Radiology |
Early online date | 20 Sept 2022 |
DOIs | |
Publication status | E-pub ahead of print - 20 Sept 2022 |