Abstract
Objective
To study the in vitro effects of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the photosensitizer methylene blue (MB) and light against Enterococcus faecalis (ATCC 29212).
Materials and Methods
The uptake and distribution of nanoparticles in E. faecalis in suspension was investigated by transmission electron microscopy (TEM) after incubation with PLGA complexed with colloidal gold particles for 2.5, 5, and 10 minutes. E. faecalis species were sensitized in planktonic phase and in experimentally infected root canals of human extracted teeth with MB-loaded nanoparticles for 10 minutes followed by exposure to red light at 665 nm.
Results
The nanoparticles were found to be concentrated mainly on the cell walls of microorganisms at all three time points. The synergism of light and MB-loaded nanoparticles led to approximately 2 and 1 log10 reduction of colony-forming units (CFUs) in planktonic phase and root canals, respectively. In both cases, mean log10 CFU levels were significantly lower than controls and MB-loaded nanoparticles without light.
Conclusion
The utilization of PLGA nanoparticles encapsulated with photoactive drugs may be a promising adjunct in antimicrobial endodontic treatment.
To study the in vitro effects of poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with the photosensitizer methylene blue (MB) and light against Enterococcus faecalis (ATCC 29212).
Materials and Methods
The uptake and distribution of nanoparticles in E. faecalis in suspension was investigated by transmission electron microscopy (TEM) after incubation with PLGA complexed with colloidal gold particles for 2.5, 5, and 10 minutes. E. faecalis species were sensitized in planktonic phase and in experimentally infected root canals of human extracted teeth with MB-loaded nanoparticles for 10 minutes followed by exposure to red light at 665 nm.
Results
The nanoparticles were found to be concentrated mainly on the cell walls of microorganisms at all three time points. The synergism of light and MB-loaded nanoparticles led to approximately 2 and 1 log10 reduction of colony-forming units (CFUs) in planktonic phase and root canals, respectively. In both cases, mean log10 CFU levels were significantly lower than controls and MB-loaded nanoparticles without light.
Conclusion
The utilization of PLGA nanoparticles encapsulated with photoactive drugs may be a promising adjunct in antimicrobial endodontic treatment.
Original language | English |
---|---|
Pages (from-to) | 322-328 |
Number of pages | 7 |
Journal | JOURNAL OF ENDODONTICS |
Volume | 36 |
Issue number | 2 |
DOIs | |
Publication status | Published - Feb 2010 |