Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy

Julie T.W. Wang, Rebecca Klippstein, Markus Martincic, Elzbieta Pach, Robert Feldman, Martin Šefl, Yves Michel, Daniel Asker, Jane K. Sosabowski, Martin Kalbac, Tatiana Da Ros, Cécilia Ménard-Moyon, Alberto Bianco, Ioanna Kyriakou, Dimitris Emfietzoglou, Jean Claude Saccavini, Belén Ballesteros*, Khuloud T. Al-Jamal, Gerard Tobias

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

39 Citations (Scopus)
243 Downloads (Pure)

Abstract

Radiation therapy along with chemotherapy and surgery remain the main cancer treatments. Radiotherapy can be applied to patients externally (external beam radiotherapy) or internally (brachytherapy and radioisotope therapy). Previously, nanoencapsulation of radioactive crystals within carbon nanotubes, followed by end-closing, resulted in the formation of nanocapsules that allowed ultrasensitive imaging in healthy mice. Herein we report on the preparation of nanocapsules initially sealing "cold" isotopically enriched samarium (152Sm), which can then be activated on demand to their "hot" radioactive form (153Sm) by neutron irradiation. The use of "cold" isotopes avoids the need for radioactive facilities during the preparation of the nanocapsules, reduces radiation exposure to personnel, prevents the generation of nuclear waste, and evades the time constraints imposed by the decay of radionuclides. A very high specific radioactivity is achieved by neutron irradiation (up to 11.37 GBq/mg), making the "hot" nanocapsules useful not only for in vivo imaging but also therapeutically effective against lung cancer metastases after intravenous injection. The high in vivo stability of the radioactive payload, selective toxicity to cancerous tissues, and the elegant preparation method offer a paradigm for application of nanomaterials in radiotherapy.

Original languageEnglish
Pages (from-to)129-141
Number of pages13
JournalACS Nano
Volume14
Issue number1
Early online date19 Nov 2019
DOIs
Publication statusPublished - 28 Jan 2020

Keywords

  • cancer therapy
  • filled carbon nanotubes
  • nanoencapsulation
  • nanooncology
  • nuclear imaging
  • radiooncology

Fingerprint

Dive into the research topics of 'Neutron Activated 153Sm Sealed in Carbon Nanocapsules for in Vivo Imaging and Tumor Radiotherapy'. Together they form a unique fingerprint.

Cite this