On overabundant words and their application to biological sequence analysis

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)
192 Downloads (Pure)

Abstract

The observed frequency of the longest proper prefix, the longest proper suffix, and the longest infix of a word w in a given sequence x can be used for classifying w as avoided or overabundant. The definitions used for the expectation and deviation of w in this statistical model were described and biologically justified by Brendel et al. (J Biomol Struct Dyn 1986, [1]). We have very recently introduced a time-optimal algorithm for computing all avoided words of a given sequence over an integer alphabet (Algorithms Mol Biol 2017, [2]). In this article, we extend this study by presenting an O(n)-time and O(n)-space algorithm for computing all overabundant words in a sequence x of length n over an integer alphabet. Our main result is based on a new non-trivial combinatorial property of the suffix tree T of x: the number of distinct factors of x whose longest infix is the label of an explicit node of T is no more than 3n−4. We further show that the presented algorithm is time-optimal by proving that O(n) is a tight upper bound for the number of overabundant words. Finally, we present experimental results, using both synthetic and real data, which justify the effectiveness and efficiency of our approach in practical terms.
Original languageEnglish
JournalTheoretical Computer Science
Early online date12 Sept 2018
DOIs
Publication statusE-pub ahead of print - 12 Sept 2018

Keywords

  • Overabundant words
  • Avoided words
  • Pattern matching
  • Suffix tree
  • DNA sequence analysis

Fingerprint

Dive into the research topics of 'On overabundant words and their application to biological sequence analysis'. Together they form a unique fingerprint.

Cite this