TY - JOUR
T1 - Parametric Mapping for TSPO PET Imaging with Spectral Analysis Impulsive Response Function
AU - Veronese, Mattia
AU - Tuosto, Marcello
AU - Marques, Tiago Reis
AU - Howes, Oliver
AU - Pascual, Belen
AU - Yu, Meixiang
AU - Masdeu, Joseph C
AU - Turkheimer, Federico
AU - Bertoldo, Alessandra
AU - Zanotti-Fregonara, Paolo
N1 - Funding Information:
This study was supported by the National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London Maudsley Foundation Trust and King’s College London. It was also partially funded by the Harrison, Chao, Graham, and Nantz Funds of the Houston Methodist Foundation.
Publisher Copyright:
© 2021, The Author(s).
Copyright:
Copyright 2021 Elsevier B.V., All rights reserved.
PY - 2021/8
Y1 - 2021/8
N2 - PURPOSE: The aim of this study was to investigate the use of spectral analysis (SA) for voxel-wise analysis of TSPO PET imaging studies. TSPO PET quantification is methodologically complicated by the heterogeneity of TSPO expression and its cell-dependent modulation during neuroinflammatory response. Compartmental models to account for this complexity exist, but they are unreliable at the high noise typical of voxel data. On the contrary, SA is noise-robust for parametric mapping and provides useful information about tracer kinetics with a free compartmental structure.PROCEDURES: SA impulse response function (IRF) calculated at 90 min after tracer injection was used as main parameter of interest in 3 independent PET imaging studies to investigate its sensitivity to (1) a TSPO genetic polymorphism (rs6971) known to affect tracer binding in a cross-sectional analysis of healthy controls scanned with [11C]PBR28 PET; (2) TSPO density with [11C]PBR28 in a competitive blocking study with a TSPO blocker, XBD173; and (3) the higher affinity of a second radiotracer for TSPO, by using data from a head-to-head comparison between [11C]PBR28 and [11C]ER176 scans.RESULTS: SA-IRF produced parametric maps of visually good quality. These were sensitive to TSPO genotype (mean relative difference between high- and mixed-affinity binders = 25 %) and TSPO availability (mean signal displacement after 90 mg oral administration of XBD173 = 39 %). Regional averages of voxel-wise IRF estimates were strongly associated with regional total distribution volume (VT) estimated with a 2-tissue compartmental model with vascular compartment (Pearson's r = 0.86 ± 0.11) but less strongly with standard 2TCM-VT (Pearson's r = 0.76 ± 0.32). Finally, SA-IRF estimates for [11C]ER176 were significantly higher than [11C]PBR28 ones, consistent with the higher amount of specific binding of the former tracer.CONCLUSIONS: SA-IRF can be used for voxel-wise quantification of TSPO PET data because it generates high-quality parametric maps, it is sensitive to TSPO availability and genotype, and it accounts for the complexity of TSPO tracer kinetics with no additional assumptions.
AB - PURPOSE: The aim of this study was to investigate the use of spectral analysis (SA) for voxel-wise analysis of TSPO PET imaging studies. TSPO PET quantification is methodologically complicated by the heterogeneity of TSPO expression and its cell-dependent modulation during neuroinflammatory response. Compartmental models to account for this complexity exist, but they are unreliable at the high noise typical of voxel data. On the contrary, SA is noise-robust for parametric mapping and provides useful information about tracer kinetics with a free compartmental structure.PROCEDURES: SA impulse response function (IRF) calculated at 90 min after tracer injection was used as main parameter of interest in 3 independent PET imaging studies to investigate its sensitivity to (1) a TSPO genetic polymorphism (rs6971) known to affect tracer binding in a cross-sectional analysis of healthy controls scanned with [11C]PBR28 PET; (2) TSPO density with [11C]PBR28 in a competitive blocking study with a TSPO blocker, XBD173; and (3) the higher affinity of a second radiotracer for TSPO, by using data from a head-to-head comparison between [11C]PBR28 and [11C]ER176 scans.RESULTS: SA-IRF produced parametric maps of visually good quality. These were sensitive to TSPO genotype (mean relative difference between high- and mixed-affinity binders = 25 %) and TSPO availability (mean signal displacement after 90 mg oral administration of XBD173 = 39 %). Regional averages of voxel-wise IRF estimates were strongly associated with regional total distribution volume (VT) estimated with a 2-tissue compartmental model with vascular compartment (Pearson's r = 0.86 ± 0.11) but less strongly with standard 2TCM-VT (Pearson's r = 0.76 ± 0.32). Finally, SA-IRF estimates for [11C]ER176 were significantly higher than [11C]PBR28 ones, consistent with the higher amount of specific binding of the former tracer.CONCLUSIONS: SA-IRF can be used for voxel-wise quantification of TSPO PET data because it generates high-quality parametric maps, it is sensitive to TSPO availability and genotype, and it accounts for the complexity of TSPO tracer kinetics with no additional assumptions.
UR - http://www.scopus.com/inward/record.url?scp=85099863150&partnerID=8YFLogxK
U2 - 10.1007/s11307-020-01575-9
DO - 10.1007/s11307-020-01575-9
M3 - Article
C2 - 33475944
SN - 1536-1632
VL - 23
SP - 560
EP - 571
JO - Molecular Imaging and Biology
JF - Molecular Imaging and Biology
IS - 4
ER -