TY - JOUR
T1 - PCSK9 Activity Is Potentiated Through HDL Binding
AU - Burnap, Sean A
AU - Sattler, Katherine
AU - Pechlaner, Raimund
AU - Duregotti, Elisa
AU - Lu, Ruifang
AU - Theofilatos, Konstantinos
AU - Takov, Kaloyan
AU - Heusch, Gerd
AU - Tsimikas, Sotirios
AU - Fernandez-Hernando, Carlos
AU - Berry, Sarah E
AU - Hall, Wendy Louise
AU - Notdurfter, Marlene
AU - Rungger, Gregorio
AU - Paulweber, Bernhard
AU - Willeit, Johann
AU - Kiechl, Stefan
AU - Levkau, Bodo
AU - Mayr, Manuel
PY - 2021/11/12
Y1 - 2021/11/12
N2 - Rationale: Proprotein convertase subtilisin/kexin type 9 (PCSK9) circulates in a free and lipoprotein-bound form, yet the functional consequence of the association between PCSK9 and high-density lipoprotein (HDL) remains unexplored.Objective: This study sought to interrogate the novel relationship between PCSK9 and HDL in humans.Methods and Results: Comparing lipoprotein and apolipoprotein profiles by nuclear magnetic resonance and targeted mass spectrometry measurements with PCSK9 levels in the community-based Bruneck (n=656) study revealed a positive association of plasma PCSK9 with small HDL, alongside a highly significant positive correlation between plasma levels of PCSK9 and apolipoprotein-C3, an inhibitor of lipoprotein lipase. The latter association was replicated in an independent cohort, the SAPHIR study (n=270). Thus, PCSK9-HDL association was determined during the postprandial response in two dietary studies (n=20 participants each, 8 times points). Peak triglyceride levels coincided with an attenuation of the PCSK9-HDL association, a loss of apolipoprotein-C3 from HDL and lower levels of small HDL as measured by nuclear magnetic resonance. Crosslinking mass spectrometry (XLMS) upon isolated HDL identified PCSK9 as a potential HDL-binding partner. PCSK9 association with HDL was confirmed through size-exclusion chromatography and immuno-isolation. Quantitative proteomics upon HDL isolated from patients with coronary artery disease (n=172) returned PCSK9 as a core member of the HDL proteome. Combined interrogation of the HDL proteome and lipidome revealed a distinct cluster of PCSK9, phospholipid transfer protein, clusterin and apolipoprotein-E within the HDL proteome, that was altered by sex and positively correlated with sphingomyelin content. Mechanistically, HDL facilitated PCSK9-mediated low-density lipoprotein receptor degradation and reduced low-density lipoprotein uptake through the modulation of PCSK9 internalisation and multimerisation.Conclusions: This study reports HDL as a binder of PCSK9 and regulator of its function. The combination of -omic technologies revealed postprandial lipaemia as a driver of PCSK9 and apolipoprotein-C3 release from HDL.
AB - Rationale: Proprotein convertase subtilisin/kexin type 9 (PCSK9) circulates in a free and lipoprotein-bound form, yet the functional consequence of the association between PCSK9 and high-density lipoprotein (HDL) remains unexplored.Objective: This study sought to interrogate the novel relationship between PCSK9 and HDL in humans.Methods and Results: Comparing lipoprotein and apolipoprotein profiles by nuclear magnetic resonance and targeted mass spectrometry measurements with PCSK9 levels in the community-based Bruneck (n=656) study revealed a positive association of plasma PCSK9 with small HDL, alongside a highly significant positive correlation between plasma levels of PCSK9 and apolipoprotein-C3, an inhibitor of lipoprotein lipase. The latter association was replicated in an independent cohort, the SAPHIR study (n=270). Thus, PCSK9-HDL association was determined during the postprandial response in two dietary studies (n=20 participants each, 8 times points). Peak triglyceride levels coincided with an attenuation of the PCSK9-HDL association, a loss of apolipoprotein-C3 from HDL and lower levels of small HDL as measured by nuclear magnetic resonance. Crosslinking mass spectrometry (XLMS) upon isolated HDL identified PCSK9 as a potential HDL-binding partner. PCSK9 association with HDL was confirmed through size-exclusion chromatography and immuno-isolation. Quantitative proteomics upon HDL isolated from patients with coronary artery disease (n=172) returned PCSK9 as a core member of the HDL proteome. Combined interrogation of the HDL proteome and lipidome revealed a distinct cluster of PCSK9, phospholipid transfer protein, clusterin and apolipoprotein-E within the HDL proteome, that was altered by sex and positively correlated with sphingomyelin content. Mechanistically, HDL facilitated PCSK9-mediated low-density lipoprotein receptor degradation and reduced low-density lipoprotein uptake through the modulation of PCSK9 internalisation and multimerisation.Conclusions: This study reports HDL as a binder of PCSK9 and regulator of its function. The combination of -omic technologies revealed postprandial lipaemia as a driver of PCSK9 and apolipoprotein-C3 release from HDL.
UR - http://www.scopus.com/inward/record.url?scp=85121957679&partnerID=8YFLogxK
U2 - 10.1161/CIRCRESAHA.121.319272
DO - 10.1161/CIRCRESAHA.121.319272
M3 - Article
C2 - 34601896
SN - 0009-7330
VL - 129
SP - 1039
EP - 1053
JO - Circulation Research
JF - Circulation Research
IS - 11
ER -