Abstract

We have carried out a PET performance evaluation a silicon photo-multiplier (SiPM) based PET scanner designed for fully simultaneous pre-clinical PET/MR studies. The PET scanner has an inner diameter of 20 cm with an LYSO crystal size of 1.3 by 1.3 by 10 mm. The axial PET field of view (FOV) is 30.2 mm. The PET detector modules, which incorporate SiPMs, have been designed to be MR-compatible allowing them to be located directly within a Philips Achieva 3T MR scanner. The spatial resolution of the system measured using a point source in a non-active background, is just under 2.3 mm full width at half maximum (FWHM) in the transaxial direction when single slice rebinning (SSRB) and 2D filtered back-projection (FBP) is used for reconstruction, and 1.3 mm FWHM when resolution modeling is employed. The system sensitivity is 0.6% for a point source at the center of the FOV. The true coincidence count rate shows no sign of saturating at 30 MBq, at which point the randoms fraction is 8.2%, and the scatter fraction for a rat sized object is approximately 23%. Artifact-free images of phantoms have been obtained using FBP and iterative reconstructions. The performance is currently limited because only one of three axial ring positions is populated with detectors, and due to limitations of the first-generation detector readout ASIC used in the system. The performance of the system as described is sufficient for simultaneous PET-MR imaging of rat-sized animals and large organs within the mouse. This is demonstrated with dynamic PET and MR data acquired simultaneously from a mouse injected with a dual-labeled PET/MR probe.

Original languageEnglish
Article number7045614
Pages (from-to)784-790
Number of pages7
JournalIEEE Transactions on Nuclear Science
Volume62
Issue number3
DOIs
Publication statusPublished - 1 Jun 2015

Keywords

  • Magnetic Resonance Compatible PET
  • PET-MR
  • PET-MRI
  • positron emission tomography
  • silicon photo-multiplier

Fingerprint

Dive into the research topics of 'PET Performance Evaluation of a Pre-Clinical SiPM-Based MR-Compatible PET Scanner'. Together they form a unique fingerprint.

Cite this