Phase Diagram of a Three-Orbital Model for High-T c Cuprate Superconductors

Cedric Weber, Thierry Giamarchi, Chandra Varma

Research output: Contribution to journalArticlepeer-review

45 Citations (Scopus)

Abstract

We study the phase diagram of an effective three-orbital model of the cuprates using variational Monte Carlo calculations on asymptotically large lattices and exact diagonalization on a 24-site cluster. States with ordered orbital current loops (LC), itinerant antiferromagnetism, d-wave superconductivity, and the Fermi liquid are investigated using appropriate Slater determinants refined by Jastrow functions for on-site and intersite correlations. We find an LC state stable in the thermodynamic limit for a range of parameters compatible with the Fermi surface of a typical hole doped superconductor provided the transfer integrals between the oxygen atoms have signs determined by the effects of indirect transfer through the Cu−4s orbitals as suggested by Andersen. The results of the calculations are that the LC phase gives way at lower dopings to an antiferromagnetism phase, and at larger dopings to superconductivity and Fermi liquid phases.
Original languageEnglish
Article number117001
Number of pages11
JournalPhys. Rev. Letters
Volume112
DOIs
Publication statusPublished - 18 Mar 2014

Fingerprint

Dive into the research topics of 'Phase Diagram of a Three-Orbital Model for High-T c Cuprate Superconductors'. Together they form a unique fingerprint.

Cite this