TY - JOUR
T1 - Phosphatidylinositol 3-kinase is a central mediator of NMDA receptor signalling to MAP kinase (Erk1/2), Akt/PKB and CREB in striatal neurones
AU - Perkinton, M S
AU - Ip, J K
AU - Wood, G L
AU - Crossthwaite, A J
AU - Williams, R J
PY - 2002
Y1 - 2002
N2 - Ca2+ influx through NMIDA receptors can initiate molecular changes in neurones which may underlie synaptic plasticity, neuronal development, survival and excitotoxicity. Signalling through the MAP kinase (Erk1/2) cascade may be central to these processes. We previously demonstrated that Ca2+-permeable AMPA receptors activate Erk1/2 through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent mechanism. We now report that NMIDA receptor activation of Erk1/2 was also blocked by inhibitors of PI 3-kinase (LY 294002, wortmannin). In addition, pre-treatment of neurones with pertussis toxin inhibited NMDA-induced Erk1/2 activation, indicating a role for heterotrimeric G(i/o) proteins. PI 3-kinase directs activation of the serine-threonine kinase Akt (PKB). Treatment of striatal neurones with glutamate induced a rapid Ca2+-dependent and PI 3-kinase-dependent phosphorylation of Akt (Ser473), which was not blocked by the Mek inhibitors PD98059 or U0126. Targets for Erk1/2 and Akt pathways include transcription factors. Glutamate-induced phosphorylation of cAMP response element binding protein (CREB; Ser-133) was partially blocked with either PD98059, U0126, LY294002 or wortmannin but was very strongly inhibited on co-application of LY294002 and PD98059. We propose that NMDA receptor stimulation can activate Erk1/2 and Akt signalling pathways in a PI 3-kinase dependent manner which may target CREB in the nucleus.
AB - Ca2+ influx through NMIDA receptors can initiate molecular changes in neurones which may underlie synaptic plasticity, neuronal development, survival and excitotoxicity. Signalling through the MAP kinase (Erk1/2) cascade may be central to these processes. We previously demonstrated that Ca2+-permeable AMPA receptors activate Erk1/2 through a phosphatidylinositol 3-kinase (PI 3-kinase)-dependent mechanism. We now report that NMIDA receptor activation of Erk1/2 was also blocked by inhibitors of PI 3-kinase (LY 294002, wortmannin). In addition, pre-treatment of neurones with pertussis toxin inhibited NMDA-induced Erk1/2 activation, indicating a role for heterotrimeric G(i/o) proteins. PI 3-kinase directs activation of the serine-threonine kinase Akt (PKB). Treatment of striatal neurones with glutamate induced a rapid Ca2+-dependent and PI 3-kinase-dependent phosphorylation of Akt (Ser473), which was not blocked by the Mek inhibitors PD98059 or U0126. Targets for Erk1/2 and Akt pathways include transcription factors. Glutamate-induced phosphorylation of cAMP response element binding protein (CREB; Ser-133) was partially blocked with either PD98059, U0126, LY294002 or wortmannin but was very strongly inhibited on co-application of LY294002 and PD98059. We propose that NMDA receptor stimulation can activate Erk1/2 and Akt signalling pathways in a PI 3-kinase dependent manner which may target CREB in the nucleus.
UR - http://www.scopus.com/inward/record.url?scp=0036316691&partnerID=8YFLogxK
U2 - 10.1046/j.0022-3042.2001.00699.x
DO - 10.1046/j.0022-3042.2001.00699.x
M3 - Article
VL - 80
SP - 239
EP - 254
JO - Journal of Neurochemistry
JF - Journal of Neurochemistry
IS - 2
ER -