Porz, an essential component of the type ix secretion system of porphyromonas gingivalis, delivers anionic lipopolysaccharide to the poru sortase for transpeptidase processing of t9ss cargo proteins

Mariusz Madej, Zuzanna Nowakowska, Miroslaw Ksiazek, Anna M. Lasica, Danuta Mizgalska, Magdalena Nowak, Anna Jacula, Monika Bzowska, Carsten Scavenius, Jan J. Enghild, Joseph Aduse-Opoku, Michael A. Curtis, F. Xavier Gomis-Rüth*, Jan Potempa

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

18 Citations (Scopus)

Abstract

Cargo proteins of the type IX secretion system (T9SS) in human pathogens from the Bacteroidetes phylum invariably possess a conserved C-terminal domain (CTD) that functions as a signal for outer membrane (OM) translocation. In Porphyromonas gingivalis, the CTD of cargos is cleaved off after translocation, and anionic lipopolysaccharide (A-LPS) is attached. This transpeptidase reaction anchors secreted proteins to the OM. PorZ, a cell surface-associated protein, is an essential component of the T9SS whose function was previously unknown. We recently solved the crystal structure of PorZ and found that it consists of two β-propeller moieties, followed by a CTD. In this study, we performed structure-based modeling, suggest-ing that PorZ is a carbohydrate-binding protein. Indeed, we found that recombinant PorZ specifically binds A-LPS in vitro. Binding was blocked by monoclonal antibodies that specifically react with a phosphorylated branched mannan in the anionic polysaccharide (A-PS) component of A-LPS, but not with the core oligosaccharide or the lipid A endotoxin. Examination of A-LPS derived from a cohort of mutants producing various truncations of A-PS confirmed that the phosphorylated branched mannan is indeed the PorZ ligand. Moreover, purified recombinant PorZ interacted with the PorU sortase in an A-LPS-dependent manner. This interaction on the cell surface is crucial for the function of the “attachment complex” composed of PorU, PorZ, and the integral OM β-barrel proteins PorV and PorQ, which is involved in posttransla-tional modification and retention of T9SS cargos on the bacterial surface. IMPORTANCE Bacteria have evolved multiple systems to transport effector proteins to their surface or into the surrounding milieu. These proteins have a wide range of functions, including attachment, motility, nutrient acquisition, and toxicity in the host. Porphyromonas gingivalis, the human pathogen responsible for severe gum diseases (periodontitis), uses a recently characterized type IX secretion system (T9SS) to translocate and anchor secreted virulence effectors to the cell surface. Anchorage is facilitated by sortase, an enzyme that covalently attaches T9SS cargo proteins to a unique anionic lipopolysaccharide (A-LPS) moiety of P. gingivalis. Here, we show that the T9SS component PorZ interacts with sortase and specifically binds A-LPS. Binding is mediated by a phosphorylated branched mannan repeat in A-LPS polysaccharide. A-LPS-bound PorZ interacts with sortase with significantly higher affinity, facilitating modification of cargo proteins by the cell surface attachment complex of the T9SS.

Original languageEnglish
Article numbere02262-20
Pages (from-to)1-14
Number of pages14
JournalMbio
Volume12
Issue number1
DOIs
Publication statusPublished - 1 Jan 2021

Keywords

  • Gingipains
  • Lipopolysaccharide
  • Porphyromonas gingivalis
  • Secretion
  • T9SS

Fingerprint

Dive into the research topics of 'Porz, an essential component of the type ix secretion system of porphyromonas gingivalis, delivers anionic lipopolysaccharide to the poru sortase for transpeptidase processing of t9ss cargo proteins'. Together they form a unique fingerprint.

Cite this