Quality-Aware Cine Cardiac MRI Reconstruction and Analysis from Undersampled K-Space Data

Inês Machado*, Esther Puyol-Antón, Kerstin Hammernik, Gastão Cruz, Devran Ugurlu, Bram Ruijsink, Miguel Castelo-Branco, Alistair Young, Claudia Prieto, Julia A. Schnabel, Andrew P. King

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference paperpeer-review

2 Citations (Scopus)

Abstract

Cine cardiac MRI is routinely acquired for the assessment of cardiac health, but the imaging process is slow and typically requires several breath-holds to acquire sufficient k-space profiles to ensure good image quality. Several undersampling-based reconstruction techniques have been proposed during the last decades to speed up cine cardiac MRI acquisition. However, the undersampling factor is commonly fixed to conservative values before acquisition to ensure diagnostic image quality, potentially leading to unnecessarily long scan times. In this paper, we propose an end-to-end quality-aware cine short-axis cardiac MRI framework that combines image acquisition and reconstruction with downstream tasks such as segmentation, volume curve analysis and estimation of cardiac functional parameters. The goal is to reduce scan time by acquiring only a fraction of k-space data to enable the reconstruction of images that can pass quality control checks and produce reliable estimates of cardiac functional parameters. The framework consists of a deep learning model for the reconstruction of 2D+t cardiac cine MRI images from undersampled data, an image quality-control step to detect good quality reconstructions, followed by a deep learning model for bi-ventricular segmentation, a quality-control step to detect good quality segmentations and automated calculation of cardiac functional parameters. To demonstrate the feasibility of the proposed approach, we perform simulations using a cohort of selected participants from the UK Biobank (n = 270), 200 healthy subjects and 70 patients with cardiomyopathies. Our results show that we can produce quality-controlled images in a scan time reduced from 12 to 4 s per slice, enabling reliable estimates of cardiac functional parameters such as ejection fraction within 5% mean absolute error.

Original languageEnglish
Title of host publicationStatistical Atlases and Computational Models of the Heart. Multi-Disease, Multi-View, and Multi-Center Right Ventricular Segmentation in Cardiac MRI Challenge - 12th International Workshop, STACOM 2021, Held in Conjunction with MICCAI 2021, Revised Selected Papers
EditorsEsther Puyol Antón, Alistair Young, Avan Suinesiaputra, Mihaela Pop, Carlos Martín-Isla, Maxime Sermesant, Oscar Camara, Karim Lekadir
PublisherSpringer Science and Business Media Deutschland GmbH
Pages12-20
Number of pages9
ISBN (Print)9783030937218
DOIs
Publication statusPublished - 2022
Event12th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2021 held in conjunction with MICCAI 2021 - Strasbourg, France
Duration: 27 Sept 202127 Sept 2021

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume13131 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference12th International Workshop on Statistical Atlases and Computational Models of the Heart, STACOM 2021 held in conjunction with MICCAI 2021
Country/TerritoryFrance
CityStrasbourg
Period27/09/202127/09/2021

Keywords

  • Accelerated MRI
  • Cardiac MRI
  • Deep learning reconstruction
  • Image segmentation
  • Quality assessment

Fingerprint

Dive into the research topics of 'Quality-Aware Cine Cardiac MRI Reconstruction and Analysis from Undersampled K-Space Data'. Together they form a unique fingerprint.

Cite this