Abstract
(18)F-Fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) is now routinely used in oncological imaging for diagnosis and staging and increasingly to determine early response to treatment, often employing semiquantitative measures of lesion activity such as the standardized uptake value (SUV). However, the ability to predict the behaviour of a tumour in terms of future therapy response or prognosis using SUVs from a baseline scan prior to treatment is limited. It is recognized that medical images contain more useful information than may be perceived with the naked eye, leading to the field of "radiomics" whereby additional features can be extracted by computational postprocessing techniques. In recent years, evidence has slowly accumulated showing that parameters obtained by texture analysis of radiological images, reflecting the underlying spatial variation and heterogeneity of voxel intensities within a tumour, may yield additional predictive and prognostic information. It is hoped that measurement of these textural features may allow better tissue characterization as well as better stratification of treatment in clinical trials, or individualization of future cancer treatment in the clinic, than is possible with current imaging biomarkers. In this review we focus on the literature describing the emerging methods of texture analysis in (18)FDG PET/CT, as well as other imaging modalities, and how the measurement of spatial variation of voxel grey-scale intensity within an image may provide additional predictive and prognostic information, and postulate the underlying biological mechanisms.
Original language | English |
---|---|
Pages (from-to) | 133-40 |
Number of pages | 8 |
Journal | European Journal of Nuclear Medicine and Molecular Imaging |
Volume | 40 |
Issue number | 1 |
Early online date | 13 Oct 2012 |
DOIs | |
Publication status | Published - Jan 2013 |
Keywords
- Fluorodeoxyglucose F18
- Humans
- Mathematical Computing
- Multimodal Imaging
- Neoplasms
- Positron-Emission Tomography
- Probability
- Prognosis
- Radiopharmaceuticals
- Tomography, X-Ray Computed