Abstract
Preparing and observing quantum states of nanoscale particles is a challenging task with great relevance for quantum technologies and tests of fundamental physics. In contrast to atomic systems with discrete transitions, nanoparticles exhibit a practically continuous absorption spectrum and thus their quantum dynamics cannot be easily manipulated. Here, we demonstrate that charged nanoscale dielectrics can be artificially endowed with a discrete level structure by coherently interfacing their rotational and translational motion with a superconducting qubit. We propose a pulsed scheme for the generation and read-out of motional quantum superpositions and entanglement between several levitated nanoparticles, providing an all-electric platform for networked hybrid quantum devices.
Original language | English |
---|---|
Article number | 101 |
Journal | npj Quantum Information |
Volume | 6 |
Issue number | 1 |
DOIs | |
Publication status | Published - 11 Dec 2020 |