TY - JOUR
T1 - Regulatory sites for splicing in human basal ganglia are enriched for disease-relevant information
AU - International Parkinson’s Disease Genomics Consortium (IPDGC)
AU - UK Brain Expression Consortium (UKBEC)
AU - Guelfi, Sebastian
AU - D’Sa, Karishma
AU - Botía, Juan A.
AU - Vandrovcova, Jana
AU - Reynolds, Regina H.
AU - Zhang, David
AU - Trabzuni, Daniah
AU - Collado-Torres, Leonardo
AU - Thomason, Andrew
AU - Quijada Leyton, Pedro
AU - Gagliano Taliun, Sarah A.
AU - Nalls, Mike A.
AU - Noyce, Alastair J.
AU - Nicolas, Aude
AU - Cookson, Mark R.
AU - Bandres-Ciga, Sara
AU - Gibbs, J. Raphael
AU - Hernandez, Dena G.
AU - Singleton, Andrew B.
AU - Reed, Xylena
AU - Leonard, Hampton
AU - Blauwendraat, Cornelis
AU - Faghri, Faraz
AU - Bras, Jose
AU - Guerreiro, Rita
AU - Tucci, Arianna
AU - Kia, Demis A.
AU - Houlden, Henry
AU - Plun-Favreau, Helene
AU - Mok, Kin Y.
AU - Wood, Nicholas W.
AU - Lovering, Ruth
AU - R’Bibo, Lea
AU - Rizig, Mie
AU - Chelban, Viorica
AU - Tan, Manuela
AU - Morris, Huw R.
AU - Middlehurst, Ben
AU - Quinn, John
AU - Billingsley, Kimberley
AU - Holmans, Peter
AU - Kinghorn, Kerri J.
AU - Lewis, Patrick
AU - Escott-Price, Valentina
AU - Williams, Nigel
AU - Foltynie, Thomas
AU - Brice, Alexis
AU - Danjou, Fabrice
AU - Small, Kerrin S.
AU - Ramasamy, Adaikalavan
PY - 2020/12/1
Y1 - 2020/12/1
N2 - Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/.
AB - Genome-wide association studies have generated an increasing number of common genetic variants associated with neurological and psychiatric disease risk. An improved understanding of the genetic control of gene expression in human brain is vital considering this is the likely modus operandum for many causal variants. However, human brain sampling complexities limit the explanatory power of brain-related expression quantitative trait loci (eQTL) and allele-specific expression (ASE) signals. We address this, using paired genomic and transcriptomic data from putamen and substantia nigra from 117 human brains, interrogating regulation at different RNA processing stages and uncovering novel transcripts. We identify disease-relevant regulatory loci, find that splicing eQTLs are enriched for regulatory information of neuron-specific genes, that ASEs provide cell-specific regulatory information with evidence for cellular specificity, and that incomplete annotation of the brain transcriptome limits interpretation of risk loci for neuropsychiatric disease. This resource of regulatory data is accessible through our web server, http://braineacv2.inf.um.es/.
UR - http://www.scopus.com/inward/record.url?scp=85081072099&partnerID=8YFLogxK
U2 - 10.1038/s41467-020-14483-x
DO - 10.1038/s41467-020-14483-x
M3 - Article
C2 - 32098967
AN - SCOPUS:85081072099
SN - 2041-1723
VL - 11
JO - Nature Communications
JF - Nature Communications
IS - 1
M1 - 1041
ER -