Abstract
Relaxin-3 is a member of the insulin superfamily. It is expressed in the nucleus incertus of the brainstem, which has projections to the hypothalamus. Relaxin-3 binds with high affinity to RXFP1 and RXFP3. RXFP3 is expressed within the hypothalamic paraventricular nucleus (PVN), an area central to the stress response. The physiological function of relaxin-3 is unknown but previous work suggests a role in appetite control, stimulation of the hypothalamic-pituitary-gonadal axis and stress. Central administration of relaxin-3 induces c-fos expression in the PVN and increases plasma ACTH levels in rats. The aim of this study was to investigate the effect of central administration of human relaxin-3 (H3) on the hypothalamic-pituitary-adrenal (HPA) axis in male rodents in vivo and in vitro. Intracerebroventricular (i.c.v) administration of H3 (5 nmol) significantly increased plasma corticosterone at 30 min following injection compared with vehicle. Intra-PVN administration of H3 (1.8-1620 pmol) significantly increased plasma ACTH at 1620 pmol H3 and corticosterone at 180-1620 pmol H3 at 30 min following injection compared with vehicle. The stress hormone prolactin was also significantly raised at 15 min post-injection compared with vehicle. Treatment of hypothalamic explants with H3 (10-1000 nM) stimulated the release of corticotrophin-releasing hormone (CRH) and arginine vasopressin (AVP), but H3 had no effect on the release of ACTH from in vitro pituitary fragments. These results suggest that relaxin-3 may regulate the HPA axis, via hypothalamic CRH and AVP neurons. Relaxin-3 may act as a central signal linking nutritional status, reproductive function and stress.
Original language | English |
---|---|
Pages (from-to) | 337-346 |
Number of pages | 10 |
Journal | Journal of Endocrinology |
Volume | 221 |
Issue number | 2 |
DOIs | |
Publication status | Published - May 2014 |
Keywords
- relaxin-3
- RXFP3
- RXFP1
- paraventricular nucleus
- ACTH
- corticosterone
- INSULIN-INDUCED HYPOGLYCEMIA
- RECEPTOR MESSENGER-RNA
- BODY-WEIGHT GAIN
- NUCLEUS INCERTUS
- CAUSES HYPERPHAGIA
- BINDING-SITES
- H3 RELAXIN
- RAT-BRAIN
- PROTEIN
- SECRETION