Rho family GTPases are activated during HGF-stimulated prostate cancer-cell scattering

C M Wells, T Ahmed, J R W Masters, G E Jones

Research output: Contribution to journalArticlepeer-review

38 Citations (Scopus)

Abstract

An important process in embryogenesis and cancer-cell metastasis is the conversion of epithelial cells to a migratory phenotype, a phenomenon known as epithelial-mesenchymal transition (E-MT). To achieve E-MT, cells dissociate from neighbouring cells and adopt a migratory morphology. This transition requires remodelling of their cell shape and substratum adhesions; activities that require extensive reorganisation of the actin cytoskeleton. Hepatocyte growth factor (HGF)-induced scattering of Madin Darby canine kidney (MDCK) cells is a routinely used model of E-MT, in which actin cytoskeletal rearrangement is known to be dependent on Rho family GTPases. We have developed a novel model of HGF-induced E-MT using the human prostate cancer cell line, DU145. This model overcomes the limitation of using a canine cell line and facilitates the study of E-MT in human cancer. We demonstrate for the first time the scattering response of individual DU145 cells to HGF in real time and have characterised changes in actin cytoskeletal organisation and cell adhesions as these cells respond to HGF. HGF-induced scattering of DU145 cells is dependent on the activity of Rho family GTPases, and using this model, we are able to demonstrate for the first time that endogenous Cdc42 is activated downstream of HGF. Furthermore we have also shown that the response of DU145 cells to HGF is dependent on a phosphatidylinositide 3-kinase pathway
Original languageEnglish
Pages (from-to)180 - 194
Number of pages15
JournalCell Motility and the Cytoskeleton
Volume62
Issue number3
DOIs
Publication statusPublished - Nov 2005

Fingerprint

Dive into the research topics of 'Rho family GTPases are activated during HGF-stimulated prostate cancer-cell scattering'. Together they form a unique fingerprint.

Cite this