Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields

C. Abel, N. J. Ayres*, G. Ban, G. Bison, K. Bodek, V. Bondar, M. Daum, M. Fairbairn, V. V. Flambaum, P. Geltenbort, K. Green, W. C. Griffith, M. Van Der Grinten, Z. D. Grujić, P. G. Harris, N. Hild, P. Iaydjiev, S. N. Ivanov, M. Kasprzak, Y. KermaidicK. Kirch, H. C. Koch, S. Komposch, P. A. Koss, A. Kozela, J. Krempel, B. Lauss, T. Lefort, Y. Lemiére, D. J. E. Marsh, P. Mohanmurthy, A. Mtchedlishvili, M. Musgrave, F. M. Piegsa, G. Pignol, M. Rawlik, D. Rebreyend, D. Ries, S. Roccia, D. Rozpȩdzik, P. Schmidt-Wellenburg, N. Severijns, D. Shiers, Y. V. Stadnik, A. Weis, E. Wursten, J. Zejma, G. Zsigmond

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

197 Citations (Scopus)
119 Downloads (Pure)

Abstract

We report on a search for ultralow-mass axionlike dark matter by analyzing the ratio of the spinprecession frequencies of stored ultracold neutrons and 199Hg atoms for an axion-induced oscillating electric dipole moment of the neutron and an axion-wind spin-precession effect. No signal consistent with dark matter is observed for the axion mass range 10-24 ≤ ma ≤ 10-17 eV. Our null result sets the first laboratory constraints on the coupling of axion dark matter to gluons, which improve on astrophysical limits by up to 3 orders of magnitude, and also improves on previous laboratory constraints on the axion coupling to nucleons by up to a factor of 40.

Original languageEnglish
Article number041034
JournalPhysical Review X
Volume7
Issue number4
Early online date14 Nov 2017
DOIs
Publication statusPublished - 14 Nov 2017

Fingerprint

Dive into the research topics of 'Search for axionlike dark matter through nuclear spin precession in electric and magnetic fields'. Together they form a unique fingerprint.

Cite this