Structural anisotropy results in mechano-directional transport of proteins across nuclear pores

Fani Panagaki, Rafael Tapia-Rojo, Tong Zhu, Natalie Milmoe, Patricia Paracuellos, Stephanie Board, Marc Mora, Jane Walker, Elena Rostkova, Andrew Stannard, Elvira Infante, Sergi Garcia-Manyes*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Citation (Scopus)

Abstract

The nuclear pore complex regulates nucleocytoplasmic transport by means of a tightly synchronized suite of biochemical reactions. The physicochemical properties of the translocating cargos are emerging as master regulators of their shuttling dynamics. As well as being affected by molecular weight and surface-exposed amino acids, the kinetics of the nuclear translocation of protein cargos also depend on their nanomechanical properties, yet the mechanisms underpinning the mechanoselectivity of the nuclear pore complex are unclear. Here we show that proteins with locally soft regions in the vicinity of the nuclear-localization sequence exhibit higher nuclear-import rates, and that such mechanoselectivity is specifically impaired upon knocking down nucleoporin 153, a key protein in the nuclear pore complex. This allows us to design a short, easy-to-express and chemically inert unstructured peptide tag that accelerates the nuclear-import rate of stiff protein cargos. We also show that U2OS osteosarcoma cells expressing the peptide-tagged myocardin-related transcription factor import this mechanosensitive protein to the nucleus at higher rates and display faster motility. Locally unstructured regions lower the free-energy barrier of protein translocation and might offer a control mechanism for nuclear mechanotransduction.

Original languageEnglish
Pages (from-to)1180-1193
Number of pages14
JournalNature Physics
Volume20
Issue number7
DOIs
Publication statusPublished - 13 May 2024

Fingerprint

Dive into the research topics of 'Structural anisotropy results in mechano-directional transport of proteins across nuclear pores'. Together they form a unique fingerprint.

Cite this