TY - JOUR
T1 - Superradiance in string theory
AU - Mehta, Viraf M.
AU - Demirtas, Mehmet
AU - Long, Cody
AU - Marsh, David J.E.
AU - McAllister, Liam
AU - Stott, Matthew J.
N1 - Publisher Copyright:
© 2021 IOP Publishing Ltd and Sissa Medialab.
PY - 2021/7
Y1 - 2021/7
N2 - We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmological model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with 1 ≤ h 1,1 ≤ 491 closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kahler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when h 1,1 ≫ 1. When the Kahler moduli are taken at the tip of the stretched Kahler cone, the fraction of geometries excluded initially grows with h 1,1, to a maximum of ≈ 0.5 at h 1,1 ≈ 160, and then falls for larger h 1,1. Further inside the Kahler cone, the superradiance constraints are far weaker, but for h 1,1 ≫ 100 the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.
AB - We perform an extensive analysis of the statistics of axion masses and interactions in compactifications of type IIB string theory, and we show that black hole superradiance excludes some regions of Calabi-Yau moduli space. Regardless of the cosmological model, a theory with an axion whose mass falls in a superradiant band can be probed by the measured properties of astrophysical black holes, unless the axion self-interaction is large enough to disrupt formation of a condensate. We study a large ensemble of compactifications on Calabi-Yau hypersurfaces, with 1 ≤ h 1,1 ≤ 491 closed string axions, and determine whether the superradiance conditions on the masses and self-interactions are fulfilled. The axion mass spectrum is largely determined by the Kahler parameters, for mild assumptions about the contributing instantons, and takes a nearly-universal form when h 1,1 ≫ 1. When the Kahler moduli are taken at the tip of the stretched Kahler cone, the fraction of geometries excluded initially grows with h 1,1, to a maximum of ≈ 0.5 at h 1,1 ≈ 160, and then falls for larger h 1,1. Further inside the Kahler cone, the superradiance constraints are far weaker, but for h 1,1 ≫ 100 the decay constants are so small that these geometries may be in tension with astrophysical bounds, depending on the realization of the Standard Model.
KW - astrophysical black holes
KW - dark matter theory
KW - string theory and cosmology
KW - xions
UR - http://www.scopus.com/inward/record.url?scp=85118409630&partnerID=8YFLogxK
U2 - 10.1088/1475-7516/2021/07/033
DO - 10.1088/1475-7516/2021/07/033
M3 - Article
AN - SCOPUS:85118409630
SN - 1475-7516
VL - 2021
JO - Journal of Cosmology and Astroparticle Physics
JF - Journal of Cosmology and Astroparticle Physics
IS - 7
M1 - 033
ER -