TY - JOUR
T1 - TDP-43 gains function due to perturbed autoregulation in a Tardbp knock-in mouse model of ALS-FTD
AU - White, Matthew A
AU - Kim, Eosu
AU - Duffy, Amanda
AU - Adalbert, Robert
AU - Phillips, Benjamin U
AU - Peters, Owen M
AU - Stephenson, Jodie
AU - Yang, Sujeong
AU - Massenzio, Francesca
AU - Lin, Ziqiang
AU - Andrews, Simon
AU - Segonds-Pichon, Anne
AU - Metterville, Jake
AU - Saksida, Lisa M
AU - Mead, Richard
AU - Ribchester, Richard R
AU - Barhomi, Youssef
AU - Serre, Thomas
AU - Coleman, Michael P
AU - Fallon, Justin
AU - Bussey, Timothy J
AU - Brown, Robert H
AU - Sreedharan, Jemeen
PY - 2018/3/19
Y1 - 2018/3/19
N2 - Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331Kmice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.
AB - Amyotrophic lateral sclerosis-frontotemporal dementia (ALS-FTD) constitutes a devastating disease spectrum characterized by 43-kDa TAR DNA-binding protein (TDP-43) pathology. Understanding how TDP-43 contributes to neurodegeneration will help direct therapeutic efforts. Here we have created a TDP-43 knock-in mouse with a human-equivalent mutation in the endogenous mouse Tardbp gene. TDP-43Q331Kmice demonstrate cognitive dysfunction and a paucity of parvalbumin interneurons. Critically, TDP-43 autoregulation is perturbed, leading to a gain of TDP-43 function and altered splicing of Mapt, another pivotal dementia-associated gene. Furthermore, a new approach to stratify transcriptomic data by phenotype in differentially affected mutant mice revealed 471 changes linked with improved behavior. These changes included downregulation of two known modifiers of neurodegeneration, Atxn2 and Arid4a, and upregulation of myelination and translation genes. With one base change in murine Tardbp, this study identifies TDP-43 misregulation as a pathogenic mechanism that may underpin ALS-FTD and exploits phenotypic heterogeneity to yield candidate suppressors of neurodegenerative disease.
U2 - 10.1038/s41593-018-0113-5
DO - 10.1038/s41593-018-0113-5
M3 - Article
C2 - 29556029
SN - 1097-6256
VL - 21
SP - 552
EP - 563
JO - Nature Neuroscience
JF - Nature Neuroscience
ER -