Abstract
Successful drug delivery via lipid-based systems has often been aided by the incorporation of 'helper lipids'. While these neutral lipids enhance the effectiveness of cationic lipid-based delivery formulations, many questions remain about the nature of their beneficial effects. The structure of monolayers of the cationic lipid dimethyldioctadecylammonium bromide (DODAB) alone, and mixed with a neutral helper lipid, either diolelyphosphatidylethanolamine or cholesterol at a 1 : 1 molar ratio was investigated at the air-water interface using a combination of surface pressure-area isotherms, Brewster angle microscopy (BAM) and specular neutron reflectivity in combination with contrast variation. BAM studies showed that while pure DODAB and DODAB with cholesterol monolayers showed fairly homogeneous surfaces, except in the regions of phase transition, monolayers of DODAB with diolelyphosphatidylethanolamine were, in contrast, inhomogeneous exhibiting irregular bean-shaped domains throughout. Neutron reflectivity data showed that while the thickness of the DODAB monolayer increased from 17 to 24 angstrom as it was compressed from a surface pressure of 5-40 mN m(-1), the thickness of the helper lipid-containing monolayers, over the same range of surface pressures, was relatively invariant at between 25 and 27 angstrom. In addition, the monolayers containing diolelyphosphatidylethanolamine were found to be more heavily hydrated than the monolayers of cationic lipid, alone or in combination with cholesterol, with hydration levels of 18 molecules of water per molecule of lipid being recorded for the diolelyphosphatidylethanolamine-containing monolayers at a surface pressure of 30 mN m(-1) compared with only six and eight molecules of water per molecule of lipid for the pure DODAB monolayer and the cholesterol-containing DODAB monolayer, respectively.
Original language | English |
---|---|
Pages (from-to) | 548 - 561 |
Number of pages | 14 |
Journal | Journal Of The Royal Society Interface |
Volume | 9 |
Issue number | 68 |
Early online date | 10 Aug 2011 |
DOIs | |
Publication status | Published - Mar 2012 |