TY - JOUR
T1 - The effect of transcutaneous electrical stimulation of the submental area on the cardiorespiratory response in normal and awake subjects
AU - Alsharifi, Abdulaziz
AU - Kaltsakas, Georgios
AU - Pengo, Martino F.
AU - Parati, Gianfranco
AU - Serna-Pascual, Miquel
AU - Rafferty, Gerrard
AU - Steier, Joerg
N1 - Funding Information:
We are grateful for the input and support of the participants, as well as Irampaye Akbar, Niamh Carter, Michael Cheng during the physiological studies in the laboratory. Professor Steier’s contributions were partially supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London, United Kingdom. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.
Publisher Copyright:
Copyright © 2023 Alsharifi, Kaltsakas, Pengo, Parati, Serna-Pascual, Rafferty and Steier.
PY - 2023
Y1 - 2023
N2 - Background: Electrical stimulation has recently been introduced to treat patients with Obstructive sleep apnoea There are, however, few data on the effects of transcutaneous submental electrical stimulation (TES) on the cardiovascular system. We studied the effect of TES on cardiorespiratory variables in healthy volunteers during head-down-tilt (HDT) induced baroreceptor loading. Method: Cardiorespiratory parameters (blood pressure, heart rate, respiratory rate, tidal volume, airflow/minute ventilation, oxygen saturation, and end-tidal CO2/O2 concentration) were recorded seated, supine, and during head-down-tilt (50) under normoxic, hypercapnic (FiCO2 5%) and poikilocapnic hypoxic (FiO2 12%) conditions. Blood pressure (BP) was measured non-invasively and continuously (Finapres). Gas conditions were applied in random order. All participants were studied twice on different days, once without and once with TES. Results: We studied 13 healthy subjects (age 29 (12) years, six female, body mass index (BMI) 23.23 (1.6) kg·m−2). A three-way ANOVA indicated that BP decreased significantly with TES (systolic: p = 4.93E-06, diastolic: p = 3.48E-09, mean: p = 3.88E-08). Change in gas condition (systolic: p = 0.0402, diastolic: p = 0.0033, mean: p = 0.0034) and different postures (systolic: 8.49E-08, diastolic: p = 6.91E-04, mean: p = 5.47E-05) similarly impacted on BP control. When tested for interaction, there were no significant associations between the three different factors electrical stimulation, gas condition, or posture, except for an effect on minute ventilation (gas condition/posture p = 0.0369). Conclusion: Transcutaneous electrical stimulation has a substantial impact on the blood pressure. Similarly, postural changes and variations in inspired gas impact on blood pressure control. Finally, there was an interaction between posture and inspired gases that affects minute ventilation. These observations have implications on our understanding of integrated cardiorespiratory control, and may prove beneficial for patients with SDB who are assessed for treatment with electrical stimulation.
AB - Background: Electrical stimulation has recently been introduced to treat patients with Obstructive sleep apnoea There are, however, few data on the effects of transcutaneous submental electrical stimulation (TES) on the cardiovascular system. We studied the effect of TES on cardiorespiratory variables in healthy volunteers during head-down-tilt (HDT) induced baroreceptor loading. Method: Cardiorespiratory parameters (blood pressure, heart rate, respiratory rate, tidal volume, airflow/minute ventilation, oxygen saturation, and end-tidal CO2/O2 concentration) were recorded seated, supine, and during head-down-tilt (50) under normoxic, hypercapnic (FiCO2 5%) and poikilocapnic hypoxic (FiO2 12%) conditions. Blood pressure (BP) was measured non-invasively and continuously (Finapres). Gas conditions were applied in random order. All participants were studied twice on different days, once without and once with TES. Results: We studied 13 healthy subjects (age 29 (12) years, six female, body mass index (BMI) 23.23 (1.6) kg·m−2). A three-way ANOVA indicated that BP decreased significantly with TES (systolic: p = 4.93E-06, diastolic: p = 3.48E-09, mean: p = 3.88E-08). Change in gas condition (systolic: p = 0.0402, diastolic: p = 0.0033, mean: p = 0.0034) and different postures (systolic: 8.49E-08, diastolic: p = 6.91E-04, mean: p = 5.47E-05) similarly impacted on BP control. When tested for interaction, there were no significant associations between the three different factors electrical stimulation, gas condition, or posture, except for an effect on minute ventilation (gas condition/posture p = 0.0369). Conclusion: Transcutaneous electrical stimulation has a substantial impact on the blood pressure. Similarly, postural changes and variations in inspired gas impact on blood pressure control. Finally, there was an interaction between posture and inspired gases that affects minute ventilation. These observations have implications on our understanding of integrated cardiorespiratory control, and may prove beneficial for patients with SDB who are assessed for treatment with electrical stimulation.
KW - blood pressure
KW - hypoxia
KW - sleep apnoea
KW - sleep-disordered breathing
KW - upper airway physiology
UR - http://www.scopus.com/inward/record.url?scp=85150979402&partnerID=8YFLogxK
U2 - 10.3389/fphys.2023.1089837
DO - 10.3389/fphys.2023.1089837
M3 - Article
AN - SCOPUS:85150979402
SN - 1664-042X
VL - 14
JO - Frontiers in Physiology
JF - Frontiers in Physiology
M1 - 1089837
ER -