TY - JOUR
T1 - The importance of qualitative and quantitative regional wall motion abnormality assessment at rest in pediatric coronary allograft vasculopathy
AU - Dedieu, Nathalie
AU - Silva Vieira, Miguel
AU - Fenton, Matthew
AU - Wong, James
AU - Botnar, Rene
AU - Burch, Michael
AU - Greil, Gerald
AU - Hussain, Tarique
N1 - © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
PY - 2018/5/7
Y1 - 2018/5/7
N2 - CAV remains one of the main limiting factors for survival in children after heart transplantation. In this study, we explored the incremental value of routine CMR for evaluation and detection of CAV using qualitative and quantitative analysis of regional and global myocardial function and strain. This was a prospective imaging biomarker validation trial. Twenty-two patients (11 male), aged between 10 and 17 years (median 14 years) post-heart transplantation, were prospectively enrolled and underwent CMR in addition to their biennial review workup with Echo, angiography, and IVUS. Nine healthy control patients were enrolled to undergo CMR alone. Echo was used to analyze WMAs and systolic function. CMR images were analyzed qualitatively for RWMA and quantitatively for volumetric analysis, S and SR. All results were compared to IVUS and angiography assessments. Qualitatively, CMR detected RWMA corresponding to angiographic disease in 3 patients that were not detected on Echo. However, quantitative strain analysis suggested RWMA in an extra 9 patients. Detection of regional wall motion abnormality using quantitative strain analysis was associated with a higher mean stenosis grade (P=.04) and reduced graft survival (P=.04) compared to those with no quantitative wall motion abnormality. Overall, only longitudinal stain was abnormal in patients compared with controls, but there was no correlation between any of the global indices of S or SR and IVUS measurements. CMR is more sensitive than Echo for the visual detection of significant WMAs. Quantitative CMR strain analysis at rest may give additional information to discriminate those at greatest risk.
AB - CAV remains one of the main limiting factors for survival in children after heart transplantation. In this study, we explored the incremental value of routine CMR for evaluation and detection of CAV using qualitative and quantitative analysis of regional and global myocardial function and strain. This was a prospective imaging biomarker validation trial. Twenty-two patients (11 male), aged between 10 and 17 years (median 14 years) post-heart transplantation, were prospectively enrolled and underwent CMR in addition to their biennial review workup with Echo, angiography, and IVUS. Nine healthy control patients were enrolled to undergo CMR alone. Echo was used to analyze WMAs and systolic function. CMR images were analyzed qualitatively for RWMA and quantitatively for volumetric analysis, S and SR. All results were compared to IVUS and angiography assessments. Qualitatively, CMR detected RWMA corresponding to angiographic disease in 3 patients that were not detected on Echo. However, quantitative strain analysis suggested RWMA in an extra 9 patients. Detection of regional wall motion abnormality using quantitative strain analysis was associated with a higher mean stenosis grade (P=.04) and reduced graft survival (P=.04) compared to those with no quantitative wall motion abnormality. Overall, only longitudinal stain was abnormal in patients compared with controls, but there was no correlation between any of the global indices of S or SR and IVUS measurements. CMR is more sensitive than Echo for the visual detection of significant WMAs. Quantitative CMR strain analysis at rest may give additional information to discriminate those at greatest risk.
U2 - 10.1111/petr.13208
DO - 10.1111/petr.13208
M3 - Article
C2 - 29733526
SN - 1397-3142
SP - e13208
JO - PEDIATRIC TRANSPLANTATION
JF - PEDIATRIC TRANSPLANTATION
ER -