The Metal Face of Protein Tyrosine Phosphatase 1B

Elisa Bellomo, Kshetrimayum Birla Singh, Alberto Massarotti, Christer Hogstrand, Wolfgang Maret

Research output: Contribution to journalLiterature reviewpeer-review

76 Citations (Scopus)
249 Downloads (Pure)

Abstract

A new paradigm in metallobiochemistry describes the activation of inactive metalloenzymes by metal ion removal. Protein tyrosine phosphatases (PTPs) do not seem to require a metal ion for enzymatic activity. However, both metal cations and metal anions modulate their enzymatic activity. One binding site is the phosphate binding site at the catalytic cysteine residue. Oxyanions with structural similarity to phosphate, such as vanadate, inhibit the enzyme with nanomolar to micromolar affinities. In addition, zinc ions (Zn2+) inhibit with picomolar to nanomolar affinities. We mapped the cation binding site close to the anion binding site and established a specific mechanism of inhibition occurring only in the closed conformation of the enzyme when the catalytic cysteine is phosphorylated and the catalytic aspartate moves into the active site. We discuss this dual inhibition by anions and cations here for PTP1B, the most thoroughly investigated protein tyrosine phosphatase. The significance of the inhibition in phosphorylation signaling is becoming apparent only from the functions of PTP1B in the biological context of metal cations as cellular signaling ions. Zinc ion signals complement redox signals but provide a different type of control and longer lasting inhibition on a biological time scale owing to the specificity and affinity of zinc ions for coordination environments. Inhibitor design for PTP1B and other PTPs is a major area of research activity and interest owing to their prominent roles in metabolic regulation in health and disease, in particular cancer and diabetes. Our results explain the apparent dichotomy of both cations (Zn2+) and oxyanions such as vanadate inhibiting PTP1B and having insulin-enhancing (“anti-diabetic”) effects and suggest different approaches, namely targeting PTPs in the cell by affecting their physiological modulators and considering a metallodrug approach that builds on the knowledge of the insulin-enhancing effects of both zinc and vanadium compounds.
Original languageEnglish
Pages (from-to)70-83
Number of pages14
JournalCOORDINATION CHEMISTRY REVIEWS
Volume327-328
Early online date2 Jul 2016
DOIs
Publication statusPublished - 15 Nov 2016

Fingerprint

Dive into the research topics of 'The Metal Face of Protein Tyrosine Phosphatase 1B'. Together they form a unique fingerprint.

Cite this