TY - JOUR
T1 - The relationship between cortical glutamate and striatal dopamine in first-episode psychosis
T2 - a cross-sectional multimodal PET and magnetic resonance spectroscopy imaging study
AU - Jauhar, Sameer
AU - McCutcheon, Robert
AU - Borgan, Faith
AU - Veronese, Mattia
AU - Nour, Matthew
AU - Pepper, Fiona
AU - Rogdaki, M
AU - Stone, James
AU - Egerton, Alice
AU - Turkheimer, Frederico
AU - McGuire, Philip
AU - Howes, Oliver D
N1 - Copyright © 2018 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.
PY - 2018/10/1
Y1 - 2018/10/1
N2 - BACKGROUND: The pathophysiology of psychosis is incompletely understood. Disruption in cortical glutamatergic signalling causing aberrant striatal dopamine synthesis capacity is a proposed model for psychosis, but has not been tested in vivo. We therefore aimed to test the relationship between cortical glutamate concentrations and striatal dopamine synthesis capacity, and psychotic symptoms.METHODS: In this cross-sectional multimodal imaging study, 28 individuals with first-episode psychosis and 28 healthy controls underwent 18F-DOPA PET (measuring striatal dopamine synthesis capacity), and proton magnetic resonance spectroscopy (measuring anterior cingulate cortex glutamate concentrations). Participants were recruited from first-episode psychosis services in London, UK and were required to be in the first episode of a psychotic illness, with no previous illness or treatment episodes. Exclusion criteria for all participants were: history of substantial head trauma, dependence on illicit substances, medical comorbidity (other than minor illnesses), and contraindications to scanning (such as pregnancy). Symptoms were measured using the Positive and Negative Syndrome Scale. The primary endpoint was the relationship between anterior cingulate cortex glutamate concentrations and striatal dopamine synthesis capacity in individuals with their first episode of psychosis as shown by imaging, examined by linear regression. Linear regression was used to examine relationships between measures.FINDINGS: Glutamate concentrations showed a significant inverse relationship with striatal dopamine synthesis capacity in patients with psychosis (R2=0·16, p=0·03, β -1·71 × 10-4, SE 0·76 × 10-4). This relationship remained significant after the addition of age, gender, ethnicity, and medication status to the model (p=0·015). In healthy controls, there was no significant relationship between dopamine and glutamate measures (R2=0·04, p=0·39). Positive and Negative Syndrome Scale positive psychotic symptoms were positively associated with striatal dopamine synthesis capacity (R2=0·14, p=0·046, β 2546, SE 1217) and showed an inverse relationship with anterior cingulate glutamate concentrations (R2=0·16, p=0·03, β -1·71 × 10-4, SE 7·63 × 10-5). No relationships were seen with negative symptoms (positive symptoms, mean [SD] -18·4 (6·6) negative symptoms, mean [SD] -15·4 [6·1]).INTERPRETATION: These observations are consistent with the hypothesis that cortical glutamate dysfunction is related to subcortical dopamine synthesis capacity and psychosis. Although the precise mechanistic relationship between cortical glutamate and dopamine in vivo remains unclear, our findings support further studies to test the effect of modulating cortical glutamate in the treatment of psychosis.FUNDING: Medical Research Council, Wellcome Trust, Biomedical Research Council, South London and Maudsley NHS Foundation Trust, JMAS Sim Fellowship, Royal College of Physicians (Edinburgh) (SJ).
AB - BACKGROUND: The pathophysiology of psychosis is incompletely understood. Disruption in cortical glutamatergic signalling causing aberrant striatal dopamine synthesis capacity is a proposed model for psychosis, but has not been tested in vivo. We therefore aimed to test the relationship between cortical glutamate concentrations and striatal dopamine synthesis capacity, and psychotic symptoms.METHODS: In this cross-sectional multimodal imaging study, 28 individuals with first-episode psychosis and 28 healthy controls underwent 18F-DOPA PET (measuring striatal dopamine synthesis capacity), and proton magnetic resonance spectroscopy (measuring anterior cingulate cortex glutamate concentrations). Participants were recruited from first-episode psychosis services in London, UK and were required to be in the first episode of a psychotic illness, with no previous illness or treatment episodes. Exclusion criteria for all participants were: history of substantial head trauma, dependence on illicit substances, medical comorbidity (other than minor illnesses), and contraindications to scanning (such as pregnancy). Symptoms were measured using the Positive and Negative Syndrome Scale. The primary endpoint was the relationship between anterior cingulate cortex glutamate concentrations and striatal dopamine synthesis capacity in individuals with their first episode of psychosis as shown by imaging, examined by linear regression. Linear regression was used to examine relationships between measures.FINDINGS: Glutamate concentrations showed a significant inverse relationship with striatal dopamine synthesis capacity in patients with psychosis (R2=0·16, p=0·03, β -1·71 × 10-4, SE 0·76 × 10-4). This relationship remained significant after the addition of age, gender, ethnicity, and medication status to the model (p=0·015). In healthy controls, there was no significant relationship between dopamine and glutamate measures (R2=0·04, p=0·39). Positive and Negative Syndrome Scale positive psychotic symptoms were positively associated with striatal dopamine synthesis capacity (R2=0·14, p=0·046, β 2546, SE 1217) and showed an inverse relationship with anterior cingulate glutamate concentrations (R2=0·16, p=0·03, β -1·71 × 10-4, SE 7·63 × 10-5). No relationships were seen with negative symptoms (positive symptoms, mean [SD] -18·4 (6·6) negative symptoms, mean [SD] -15·4 [6·1]).INTERPRETATION: These observations are consistent with the hypothesis that cortical glutamate dysfunction is related to subcortical dopamine synthesis capacity and psychosis. Although the precise mechanistic relationship between cortical glutamate and dopamine in vivo remains unclear, our findings support further studies to test the effect of modulating cortical glutamate in the treatment of psychosis.FUNDING: Medical Research Council, Wellcome Trust, Biomedical Research Council, South London and Maudsley NHS Foundation Trust, JMAS Sim Fellowship, Royal College of Physicians (Edinburgh) (SJ).
U2 - 10.1016/S2215-0366(18)30268-2
DO - 10.1016/S2215-0366(18)30268-2
M3 - Article
C2 - 30236864
SN - 2215-0366
VL - 5
SP - 816
EP - 823
JO - The Lancet Psychiatry
JF - The Lancet Psychiatry
IS - 10
ER -