TY - JOUR
T1 - The timing of vortex shedding in a cylinder wake imposed by periodic inflow perturbations
AU - Konstantinidis, E
AU - Balabani, S
AU - Yianneskis, M
PY - 2005/11/25
Y1 - 2005/11/25
N2 - The interaction of vortex shedding from a circular cylinder with an inflow which has low-amplitude periodic velocity oscillations (perturbations) superimposed upon it, was investigated experimentally by means of particle image velocimetry. The experiments were made at three perturbation frequencies across the lock-on range in which the vortex shedding frequency is synchronized with the subharmonic of the imposed frequency. The basic wake pattern in this range is antisymmetric vortex shedding, i.e. the familiar 2S mode. The timing of vortex shedding is defined with respect to the cross-flow oscillation of the wake which is found to play a critical role. Quantitative analysis of the phase-referenced patterns of vorticity distribution in the wake shows that a vortex is actually shed from the cylinder when the cross-flow oscillation of the wake is strongest, marked by a sudden drop in the computed vortex strength. At the middle of the lock-on range, shedding occurs near the minimum inflow velocity in the cycle or, equivalently, during the forward stroke of a cylinder oscillating in-line with the flow. It is argued that the imposed timing of vortex shedding relative to the cylinder motion induces a negative excitation from the fluid, which might explain why the in-line response of a freely vibrating cylinder exhibits two positive excitation regions separated by the lock-on region found in forced oscillations
AB - The interaction of vortex shedding from a circular cylinder with an inflow which has low-amplitude periodic velocity oscillations (perturbations) superimposed upon it, was investigated experimentally by means of particle image velocimetry. The experiments were made at three perturbation frequencies across the lock-on range in which the vortex shedding frequency is synchronized with the subharmonic of the imposed frequency. The basic wake pattern in this range is antisymmetric vortex shedding, i.e. the familiar 2S mode. The timing of vortex shedding is defined with respect to the cross-flow oscillation of the wake which is found to play a critical role. Quantitative analysis of the phase-referenced patterns of vorticity distribution in the wake shows that a vortex is actually shed from the cylinder when the cross-flow oscillation of the wake is strongest, marked by a sudden drop in the computed vortex strength. At the middle of the lock-on range, shedding occurs near the minimum inflow velocity in the cycle or, equivalently, during the forward stroke of a cylinder oscillating in-line with the flow. It is argued that the imposed timing of vortex shedding relative to the cylinder motion induces a negative excitation from the fluid, which might explain why the in-line response of a freely vibrating cylinder exhibits two positive excitation regions separated by the lock-on region found in forced oscillations
U2 - 10.1017/S0022112005006786
DO - 10.1017/S0022112005006786
M3 - Article
SN - 1469-7645
VL - 543
SP - 45
EP - 55
JO - Journal of Fluid Mechanics
JF - Journal of Fluid Mechanics
ER -