TY - JOUR
T1 - Ultrasound assessment of upper airway dilator muscle contraction during transcutaneous electrical stimulation in patients with obstructive sleep apnoea
AU - Al-Sherif, Miral
AU - He, Baiting
AU - Schwarz, Esther Irene
AU - Cheng, Michael
AU - Said, Azza Farag
AU - AbdelWahab, Nashwa Hassan
AU - Refat, Nezar
AU - Luo, Yuanming
AU - Ratneswaran, Deeban
AU - Steier, Joerg
PY - 2020/10
Y1 - 2020/10
N2 - Background: Electrical current can be used to stimulate upper airway dilator muscles to treat obstructive sleep apnoea (OSA). Ultrasound devices are widely available and may be used to detect contraction of the upper airway dilator muscles assessing the functionality of electrical stimulation (ES) used for this treatment. Methods: In a physiological sub-study of a randomised controlled trial, patients with OSA underwent ultrasound examination to assess contraction of the upper airway dilator muscles in response to transcutaneous ES. Ultrasound scans were scored according to the picture quality (poor = ‘0’, acceptable = ‘1’ and good = ‘2’). Tongue base thickness was assessed in mid-sagittal and coronal planes with (D2, A2) and without ES (D1, A1), while awake and seated. The primary outcome was to determine the increase in tongue thickness during ES in both views (D2 – D1 = ΔD), as well as any increase in the cross-sectional area (CSA) in the coronal view (A2 – A1 = ΔA). Data were presented as mean and standard deviation (SD). Results: Fourteen patients [eight male, age 57.5 (9.8) years, body mass index (BMI) 29.5 (2.8) kg/m2] with OSA [Apnea-Hypopnea Index (AHI) 19.5 (10.6) × hour-1] were studied. Quality of the ultrasound scans was acceptable or good with 1.5 (0.5) points. In the mid-sagittal plane, ΔD was +0.17 (0.07) cm in midline and +0.21 (0.09) cm in the widest diameter, a percentual change of 12.2% (4%) and 12.8% (5.2%) (P<0.001, respectively). In the coronal plane, ΔD was +0.17 (0.04) cm, an increase of 12.3% (4.6%) (P<0.001, respectively), ΔA in the CSA increased by +18.9% (3.0%) with stimulation (P<0.001). There was a negative correlation between age and ΔA (r= –0.6, P=0.03), but no significant associations were found with gender, BMI, neck circumference, Epworth Sleepiness Scale (ESS), AHI, skin and subcutaneous tissue in the submental area. Conclusions: Ultrasound can visualise upper airway dilator muscle contraction during transcutaneous ES in awake patients with OSA. Contraction is best detected in the CSA of the tongue base in the coronal plane.
AB - Background: Electrical current can be used to stimulate upper airway dilator muscles to treat obstructive sleep apnoea (OSA). Ultrasound devices are widely available and may be used to detect contraction of the upper airway dilator muscles assessing the functionality of electrical stimulation (ES) used for this treatment. Methods: In a physiological sub-study of a randomised controlled trial, patients with OSA underwent ultrasound examination to assess contraction of the upper airway dilator muscles in response to transcutaneous ES. Ultrasound scans were scored according to the picture quality (poor = ‘0’, acceptable = ‘1’ and good = ‘2’). Tongue base thickness was assessed in mid-sagittal and coronal planes with (D2, A2) and without ES (D1, A1), while awake and seated. The primary outcome was to determine the increase in tongue thickness during ES in both views (D2 – D1 = ΔD), as well as any increase in the cross-sectional area (CSA) in the coronal view (A2 – A1 = ΔA). Data were presented as mean and standard deviation (SD). Results: Fourteen patients [eight male, age 57.5 (9.8) years, body mass index (BMI) 29.5 (2.8) kg/m2] with OSA [Apnea-Hypopnea Index (AHI) 19.5 (10.6) × hour-1] were studied. Quality of the ultrasound scans was acceptable or good with 1.5 (0.5) points. In the mid-sagittal plane, ΔD was +0.17 (0.07) cm in midline and +0.21 (0.09) cm in the widest diameter, a percentual change of 12.2% (4%) and 12.8% (5.2%) (P<0.001, respectively). In the coronal plane, ΔD was +0.17 (0.04) cm, an increase of 12.3% (4.6%) (P<0.001, respectively), ΔA in the CSA increased by +18.9% (3.0%) with stimulation (P<0.001). There was a negative correlation between age and ΔA (r= –0.6, P=0.03), but no significant associations were found with gender, BMI, neck circumference, Epworth Sleepiness Scale (ESS), AHI, skin and subcutaneous tissue in the submental area. Conclusions: Ultrasound can visualise upper airway dilator muscle contraction during transcutaneous ES in awake patients with OSA. Contraction is best detected in the CSA of the tongue base in the coronal plane.
KW - Genioglossus
KW - Geniohyoid
KW - Sonography
KW - Tongue
KW - Ultrasonographic
KW - Upper airway
UR - http://www.scopus.com/inward/record.url?scp=85094573158&partnerID=8YFLogxK
U2 - 10.21037/jtd-cus-2020-001
DO - 10.21037/jtd-cus-2020-001
M3 - Article
AN - SCOPUS:85094573158
SN - 2072-1439
VL - 12
SP - S139-S152
JO - Journal of Thoracic Disease
JF - Journal of Thoracic Disease
ER -