A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary

Mahir Hadzic, Steve Shkoller, Jared Speck

Research output: Contribution to journalArticlepeer-review

14 Citations (Scopus)

Abstract

We study the relativistic Euler equations on the Minkowski spacetime background. We make assumptions on the equation of state and the initial data that are relativistic analogs of the well-known physical vacuum boundary condition, which has played an important role in prior work on the non-relativistic compressible Euler equations. Our main result is the derivation, relative to Lagrangian (also known as co-moving) coordinates, of local-in-time a priori estimates for the solution. The solution features a fluid-vacuum boundary, transported by the fluid four-velocity, along which the hyperbolicity of the equations degenerates. In this context, the relativistic Euler equations are equivalent to a degenerate quasilinear hyperbolic wave-map-like system that cannot be treated using standard energy methods
Original languageEnglish
Pages (from-to)859-906
Number of pages48
JournalCOMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS
Volume44
Issue number10
DOIs
Publication statusPublished - 3 Oct 2019

Fingerprint

Dive into the research topics of 'A priori estimates for solutions to the relativistic Euler equations with a moving vacuum boundary'. Together they form a unique fingerprint.

Cite this