TY - JOUR
T1 - Copper(II) binding properties of hepcidin
AU - Kulprachakarn, Kanokwan
AU - Chen, Yu-Lin
AU - Kong, Xiaole
AU - Arno, Maria Chiara
AU - Hider, Robert Charles
AU - Srichairatanakool, Somdet
AU - Bansal, Sukhvinder
PY - 2016/2/16
Y1 - 2016/2/16
N2 - Hepcidin is a peptide hormone that regulates the homeostasis of iron metabolism. The N-terminal domain of hepcidin is conserved amongst a range of species and is capable of binding CuII and NiII through the amino terminal copper–nickel binding motif (ATCUN). It has been suggested that the binding of copper to hepcidin may have biological relevance. In this study we have investigated the binding of CuII with model peptides containing the ATCUN motif, fluorescently labelled hepcidin and hepcidin using MALDI-TOF mass spectrometry. As with albumin, it was found that tetrapeptide models of hepcidin possessed a higher affinity for CuII than that of native hepcidin. The log K 1 value of hepcidin for CuII was determined as 7.7. CuII binds to albumin more tightly than hepcidin (log K 1 = 12) and in view of the serum concentration difference of albumin and hepcidin, the bulk of kinetically labile CuII present in blood will be bound to albumin. It is estimated that the concentration of CuII-hepcidin will be less than one femtomolar in normal serum and thus the binding of copper to hepcidin is unlikely to play a role in iron homeostasis. As with albumin, small tri and tetra peptides are poor models for the metal binding properties of hepcidin.
AB - Hepcidin is a peptide hormone that regulates the homeostasis of iron metabolism. The N-terminal domain of hepcidin is conserved amongst a range of species and is capable of binding CuII and NiII through the amino terminal copper–nickel binding motif (ATCUN). It has been suggested that the binding of copper to hepcidin may have biological relevance. In this study we have investigated the binding of CuII with model peptides containing the ATCUN motif, fluorescently labelled hepcidin and hepcidin using MALDI-TOF mass spectrometry. As with albumin, it was found that tetrapeptide models of hepcidin possessed a higher affinity for CuII than that of native hepcidin. The log K 1 value of hepcidin for CuII was determined as 7.7. CuII binds to albumin more tightly than hepcidin (log K 1 = 12) and in view of the serum concentration difference of albumin and hepcidin, the bulk of kinetically labile CuII present in blood will be bound to albumin. It is estimated that the concentration of CuII-hepcidin will be less than one femtomolar in normal serum and thus the binding of copper to hepcidin is unlikely to play a role in iron homeostasis. As with albumin, small tri and tetra peptides are poor models for the metal binding properties of hepcidin.
U2 - 10.1007/s00775-016-1342-2
DO - 10.1007/s00775-016-1342-2
M3 - Article
SN - 0949-8257
JO - Journal of Biological Inorganic Chemistry
JF - Journal of Biological Inorganic Chemistry
ER -