Projects per year
Abstract
Recent synthesis of covalent organic assemblies at surfaces has opened the promise of producing robust nanostructures for functional interfaces. To uncover how this new chemistry works at surfaces and understand the underlying mechanisms that control bond-breaking and bond-making processes at specific positions of the participating molecules, we study here the coupling reaction of tetra-(mesityl)porphyrin molecules, which creates covalently connected networks on the Cu(110) surface by utilizing the 4-methyl groups as unique connection points. Using scanning tunneling microscopy (STM), state-of-the-art density functional theory (DFT), and Nudged Elastic Band (NEB) calculations, we show that the unique directionality of the covalent bonding is found to stem from a chain of highly selective C−H activation and dehydrogenation processes, followed by specific intermolecular C−C coupling reactions that are facilitated by the surface, by steric constraints, and by anisotropic molecular diffusion. These insights provide the first steps toward developing synthetic rules for complex two-dimensional covalent organic chemistry that can be enacted directly at a surface to deliver specific macromolecular structures designed for specific functions.
Original language | English |
---|---|
Pages (from-to) | 5837-5847 |
Number of pages | 11 |
Journal | Journal of The American Chemistry Society |
Volume | 138 |
Issue number | 18 |
Early online date | 20 Apr 2016 |
DOIs | |
Publication status | Published - 11 May 2016 |
Fingerprint
Dive into the research topics of 'Driving Forces for Covalent Assembly of Porphyrins by Selective C−H Bond Activation and Intermolecular Coupling on a Copper Surface'. Together they form a unique fingerprint.Projects
- 1 Finished
-
Control of 2-dimensional molecular self-organisation: towards designed surfaces
Kantorovich, L. (Primary Investigator)
EPSRC Engineering and Physical Sciences Research Council
1/01/2012 → 9/01/2016
Project: Research