We describe the principles of counterfactual thinking in providing more precise definitions of causal effects and some of the implications of this work for the way in which causal questions in life course research are framed and evidence evaluated. Terminology is explained and examples of common life course analyses are discussed that focus on the timing of exposures, the mediation of their effects, observed and unobserved confounders, and measurement error. The examples are illustrated by analyses using singleton and twin cohort data.
Original language | English |
---|
Publication status | Published - 17 May 2021 |
---|