Marginally stable equilibria in critical ecosystems

Guilio Biroli, Guy Bunin, Chiara Cammarota

Research output: Contribution to journalArticlepeer-review

84 Citations (Scopus)
211 Downloads (Pure)

Abstract

In this work we study the stability of the equilibria reached by ecosystems formed by a large number of species. The model we focus on are Lotka–Volterra equations with symmetric random interactions. Our theoretical analysis, confirmed by our numerical studies, shows that for strong and heterogeneous interactions the system displays multiple equilibria which are all marginally stable. This property allows us to obtain general identities between diversity and single species responses, which generalize and saturate May's stability bound. By connecting the model to systems studied in condensed matter physics, we show that the multiple equilibria regime is analogous to a critical spin-glass phase. This relation suggests new experimental ways to probe marginal stability.
Original languageEnglish
JournalNEW JOURNAL OF PHYSICS
Volume20
Early online date31 Aug 2018
DOIs
Publication statusPublished - Aug 2018

Fingerprint

Dive into the research topics of 'Marginally stable equilibria in critical ecosystems'. Together they form a unique fingerprint.

Cite this