Abstract
Motion imaging phantoms are expensive, bulky and difficult to transport and set-up. The purpose of this paper is to demonstrate a simple approach to the design of multi-modality motion imaging phantoms that use mechanically stored energy to produce motion.We propose two phantom designs that use mainsprings and elastic bands to store energy. A rectangular piece was attached to an axle at the end of the transmission chain of each phantom, and underwent a rotary motion upon release of the mechanical motor. The phantoms were imaged with MRI and US, and the image sequences were embedded in a 1D non linear manifold (Laplacian Eigenmap) and the spectrogram of the embedding was used to derive the angular velocity over time. The derived velocities were consistent and reproducible within a small error. The proposed motion phantom concept showed great potential for the construction of simple and affordable motion phantoms.
Original language | English |
---|---|
Title of host publication | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 2723-2726 |
Number of pages | 4 |
ISBN (Electronic) | 9781538613115 |
DOIs | |
Publication status | Published - 1 Jul 2019 |
Event | 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 - Berlin, Germany Duration: 23 Jul 2019 → 27 Jul 2019 |
Conference
Conference | 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 |
---|---|
Country/Territory | Germany |
City | Berlin |
Period | 23/07/2019 → 27/07/2019 |